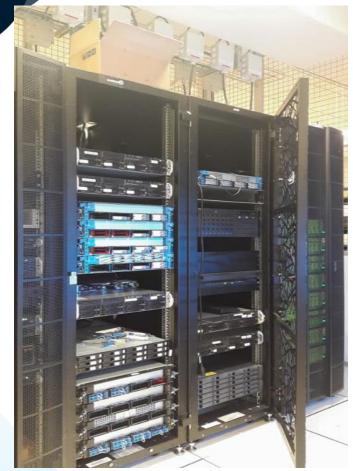
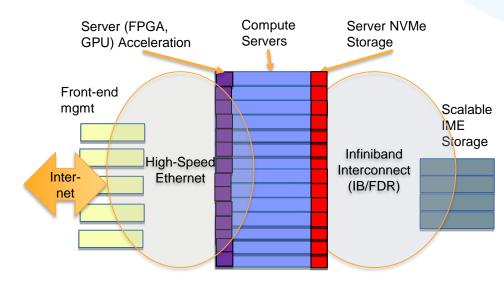


<u>Project coordinator:</u> Jean-Thomas, Acquaviva, DDN, <u>jtacquaviva@ddn.com</u>
<u>Scientific director:</u> Angelos Bilas, FORTH, <u>bilas@ics.forth.gr</u>
<u>Contact Info: info@evolve-h2020.eu</u>

May 26, 2021

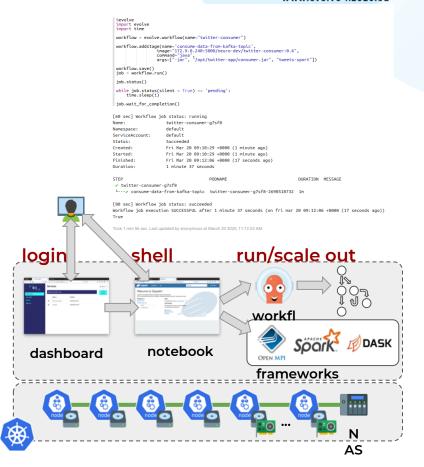



Evolve: At the Crossroads of BD-Cloud-HPC

- Goal and scope of Evolve
 - Process "large" datasets
 - Do so "interactively" for user-facing applications
- 1. BD → Productivity
 - Decouple platform from users
- 2. Cloud → Resource cost
 - Consolidation, resource provisioning, shared use of resources
- 3. HPC → Performance
 - Vertical integration, storage, interconnects, accelerators

e **6**1 e

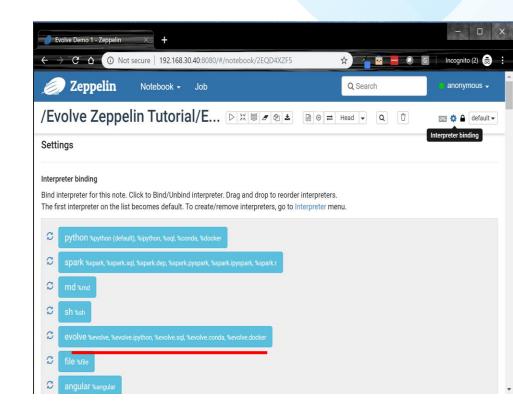
HPC Resources → Evolve Heterogeneous HW Platform


Outline

- Front-end: Decouple users from the platform
- Back-end: Resource use and efficiency
- Summary and Reflections

Productivity → **Evolve Dashboard**

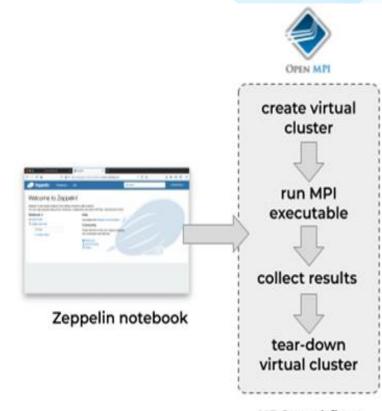
- Front-end for all users
- Offers secure and private user management
 - Isolated namespaces
- Provides notebooks as a main abstraction
 - Templates + Programmatic API
- Integrates Evolve and third-party services
 - Container-related management
- Significant integration effort


- Workflows are end-to-end synthetic descriptions of computation
- Workflows are important
 - This is what users care about
 - More room to optimize execution
- Figurative Evolve workflow
 - d1 = open("dataset")
 - d2 = spark.clean(d1, params)
 - d3 = tensorFlow.train(d2, params)
 - d4 = mpi.simulate(d3, d2)
 - d5 = spark.map(d1, f())
 - result = viz(d4, d5, params)

Custom Evolve Interpreter for Workflows

www.evolve-h2020.eu

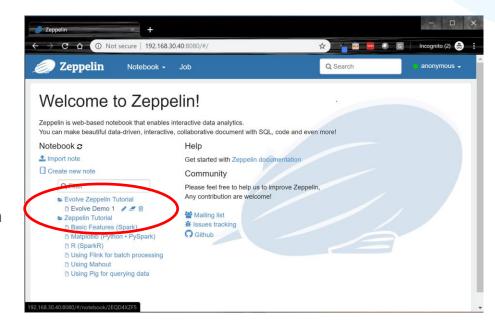
- Simplified generation of multi-stage workflows for Argo engine
- Support for control state of the K8s cluster
- Manage container images in docker repository
- Manage data files via Python or shell interpreter



Integration of HPC Computation and Big-Data Frameworks

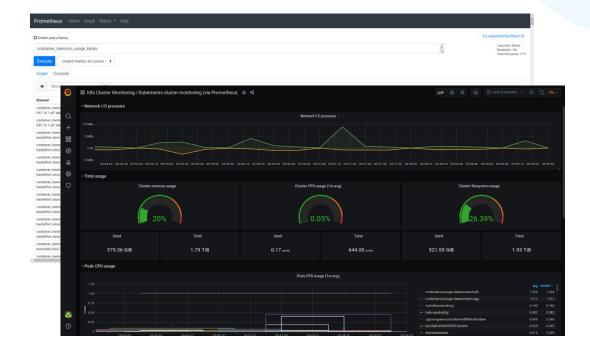
www.evolve-h2020.eu

- Workflows can include HPC/MPI stages
- MPI stages can be invoked interactively from notebooks as well
- MPI tasks make use of containerized GPU, Infiniband support
- Evolve automatically creates containerized MPI "virtual clusters"
- Executes MPI under Slurm / K8s over shared resources with BD tasks



HPC workflow

User support: Preconfigured workflows


- Dashboard Zeppelin service provides demo workflows to help users and Evolve use-case providers
- Zeppelin Tutorial folder contains
 Demo notebooks for workflows
- Available demo workflows:
 - Create a simple workflow
 - Create a workflow that includes a step with a custom python script
 - Create a workflow with a conditional step
 - Create two workflows with sensors
- "CookBooks" with instructions available as well

"Vertical" Monitoring

- Hardware resources
- Software stack
- Storage

Outline

- Front-end: Decouple users from the platform
- Back-end: Resource use and efficiency
- Summary and Reflections

Overview

1. End-to-end integration of all micro-services with the HPC platform

MPI, Kafka, Spark Structured Streaming, Apache Spark, TensorFlow/keras, Visualization

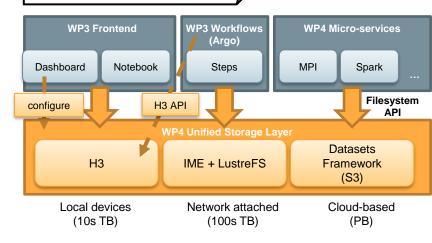
2. Enhanced storage features

- Data access path → H3 (FORTH)
- Dataset abstraction for lifecycle management → DLF (IBM)

2. Resource management

- Resource adaptation → Skynet/Genisys resource allocators
- Locality based scheduling → DLF colocation of tasks and cache pods

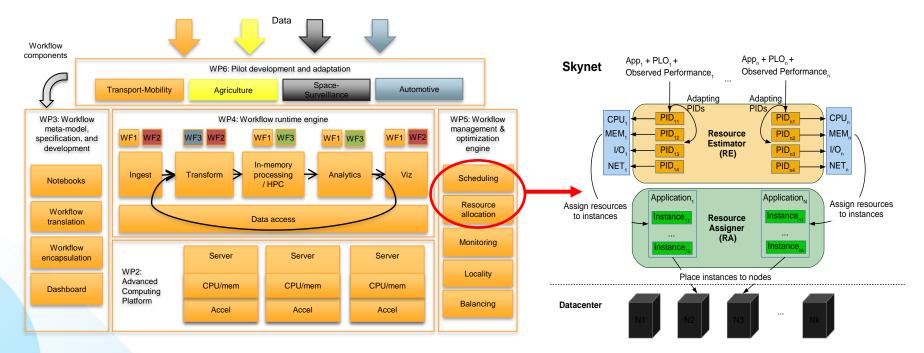
Resource Efficiency Evolve Unified Storage www.evolve-h2020.ed


Layer

- Unified storage layer: from data to datasets
- Workflow stages communicate via storage
 - Practically unlimited address space
- DLF: Data Lifecycle Framework
 - A dataset resolution service
 - Unified names for data as datasets
 - Visible everywhere, throughout task lifetime
 - Handles remote S3 datasets as well
- H3 data access layer
 - High-Volume Highly-Available High-Throughput (H3) service – Compatibility to S3
 - Unified access method, independent of devices
 - Transient workflow results go to fast local drives

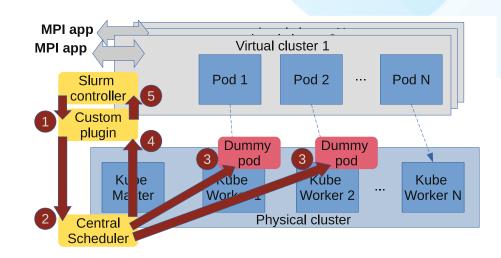
Workload Annotations

kind: Job
metadata

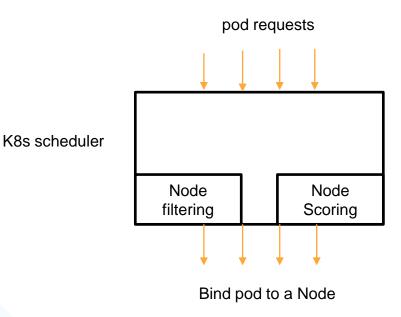

labels:
 dataset.0.id: "my-dataset"
 dataset.0.useas: "mount"
...

Resource Allocation

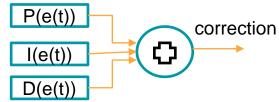
- Micro-services + Containers + Kubernetes
- Resource allocation and scheduling policies for Slurm as Kubernetes slave



Colocation of Data Processing and MPI Tasks


www.evolve-h2020.eu

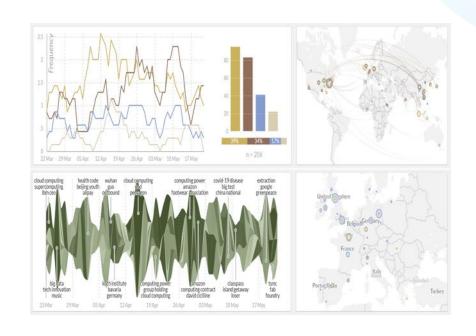
- Kubernetes Slurm co-operation
- Two possibilities
 - Slurm master
 - K8s master
- Evolve → K8s master
 - Run full MPI jobs with Slurm commands for strong compatibility
 - Slurm scripts are issued to K8s
 - K8s coordinates with Slurm for resource allocation
 - Slurm executes job script
- Evolve scheduler adjusts resources dynamically for BD tasks


Automatic Resource Allocation on K8s

- Opportunity
 - Big Data workloads are elastic
- Difficulties
 - It needs to satisfy target performance
 - More tasks can fit in a server => interference problem
- In literature: ML either on profile runs or on historic traces
 - A lot of time spent for profiling runs
 - Programs constantly change performance behavior
 - Historic traces: Only 70% of workloads are recurrent (source: Morpheus paper from MSR)

- Implemented as a Kubernetes scheduler
- It expects users to enter a target performance
 - Today users ask for resources instead
- It monitors performance, adjusts resources to meet performance targets
- Adjustments based on a PID controller
 - Online model of performance for each application
 - Model provides benefits for each application with more or less resources
 - Considers multiple resource types (CPU, mem, I/O)
- Mixed HPC-BD workload runs on actual platform

Pod requests with a performance objective Monitoring Skynet res. service alloc K8s scheduler Node Node filtering Scoring Container resizing


Outline

- Front-end: Decouple users from the platform
- Back-end: Resource use and efficiency
- **Summary and Reflections**

Broad Applicability of Software Stack → Uses Cases in Multiple Domains

- Evolve workflows cover 7 use cases
 - Automotive
 - Engine Testing
 - Predictive maintenance
 - Mobility
 - Car-ride scheduling
 - Earth Observation
 - Change Detection
 - Maritime Surveillance
 - Agriculture
 - Public Transportation
 - Bus monitoring and optimization
- + 15 Proofs of Concept (PoCs)

Summary and Reflections

Road stoppers of existing technologies

- BD processing is slow
 - Data analytics frameworks are heavy
 - As data grows this is not sustainable
- HPC is not easy to use
 - Not enough flexibility due to vertical customization
 - Not all stages of HPC-based workflows are performance critical

In Evolve we have seen

- Performance boost to BD
 - >3x due to better storage + networking (for I/O critical stages)
 - >10x due to multi-core processing for compute-heavy tasks
- Productivity boost to HPC+BD hybrid pipelines
 - 10x-30x fewer lines of code (through the use of BD ecosystem)
 - More than 10x fewer lines of code (due to simpler workflow submission)

Evolve Software Stack

- Most components already open source
- Available as a "Cloud" version
 - No HPC hardware support
- Software stack being examined for deployment in specific applications
 - e.g. sat image processing
- Possibility for access to Evolve HW + SW platform at ATOS for third parties
- Going forward → Integration with the Edge is a main challenge
 - Transparency → Workflow management
 - Efficiency → Acceleration
 - Latency → Distributed state
 - Isolation & Protection → Multiple administrative domains
- Try out the Evolve platform!

Thank you! Questions: Now or via email

Angelos Bilas < bilas@ics.forth.gr >

EVOLVE Contact Info: info@evolve-h2020.eu

Project coordinator: Jean-Thomas, Acquaviva, DDN, jtacquaviva@ddn.com

Scientific director: Angelos Bilas, FORTH, bilas@ics.forth.gr

Consortium

DDN STORAGE www.ddn.com

BULL www.atos.net **IBM** www.ibm.com FORTH www.ics.forth.gr OnApp ww.onapp.com Institute of communications and computer systems

www.microlab.ntua.gr

MemoScale

www.memoscale.com

webLyzard technology

LOBA

ASPACE

Space Hellas

NEUROCOM

webLyzard technology www.weblyzard.com LOBA www.loba.pt

www.v2c2.at

Thales Alenia Space www.thalesgroup.com

AVL 💑

www.avl.com

www.space.gr

CvbeleTech www.cybeletech.com Neurocom Luxembourg www.neurocom.eu

MemEX

www.memexitaly.it

Atiemme

Tiemme SPA www.tiemmespa.it virtual vehicle

Virtual Vehicle

AVL List GmBH

BMW AG

www.bmw.com

KOOLA www.koola.io

koole

www.evolve-h2020.eu info@evolve-h2020.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825061