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EVOLVE is a pan-European Innovation Action building a converged infrastructure to bring together the 

HPC, Cloud, and Big Data worlds. EVOLVE’s platform and software stack supports large-scale, data-intensive 

applications, driven primarily by industry requirements set by pilot and proof-of-concept use cases from 

diverse fields. Given the unprecedented data growth we are experiencing, EVOLVE’s infrastructure is key in 

enabling the cost-effective processing of massive amounts of data and the adaptation of multiple high-end 

technologies, in an environment that fosters interoperability and enforces increased security.

Abstract
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Processing large datasets is emerging as a main 

challenge of modern compute infrastructures. 

Applications require an increasing amount 

of processing power as data grows at an 

unprecedented rate [1]. Although tremendous 

progress has happened over the past several years 

on increasing productivity for data processing over 

commodity systems and providing new services 

with Big Data(BD) and Cloud technologies, the 

projected data deluge brings business, consumers, 

and the society in general at a new frontier: 

Data analytics at scale requires extensive 

computing infrastructure, either on-premise or 

in the Cloud, which in turn demands extensive 

expertise, both to operate, as well as to express 

and tune application logic so it can exploit the full 

benefits of the available hardware. Cost (CAPEX 

as well as OPEX), a steep learning curve, and 

portability, are the main barriers to scaling out 

applications. This results in long turn-around times 

for domain experts to actually process data and 

therefore design new services; long turn-around 

times for large industry, SMEs, and startups to 

implement and deploy new services; and long 

turn-around times for users and consumers, that in 

many cases would prefer near-real-time responses.

How can we pro cess massive data 

that require demanding computation? 

O v e r v i e w1

1 Big Data Value Association (BDVA). 2017. European Big 

Data Value Strategic Research and Innovation Agenda 

(SRIA), Version 4.0. (10 2017). https://www. bdva.eu/sites/

default/files/BDVA_SRIA_v4_Ed1.1.pdf
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Complex application orchestration, fully 

containerized and controlled through our 

workflow definition language.

A unified data management layer, that 

allows users to transparently access 

their local or Cloud-based datasets as 

files, both through the dashboard and in 

containers.

Custom, fine-grain resource allocation 

and scheduling schemes, as well as 

accelerator sharing methods and policies 

– important steps forward in terms of 

data center efficiency.

Tight accelerator integration with 

BD frameworks, such as Spark, both 

for batch processing and streaming 

applications.

Seamless execution of HPC applications 

as workflow stages, with Slurm 

compatibility.

Embedded visualization modules with 

innovative and responsive features,

allowing efficient and versatile

interaction with data.

Efficient monitoring of utilization, 

performance, and QoS for the whole 

wsystem and individual workflows. 

Unique EVOLVE features include:

Workflows and data are manipulated through a 

web-based dashboard, and code – expressed in a 

portable notebook format – executes seamlessly 

on HPC hardware, using a rich and versatile set 

of Big Data processing frameworks. The EVOLVE 

testbed is shared across applications using a 

Kubernetes-based execution framework, where 

all workflow stages are containerized, facilitating 

ease of deployment, isolation, portability and 

reproducibility. At the same time, the testbed 

includes provisions for data protection (security 

and integrity), the main reason that hinders shared 

deployment in domains with sensitive data.

EVOLVE addresses these issues by offering a novel, integrated computing environment that boosts productivity 

and allows interoperability,  while maintaining hardware-specific performance benefits. 

In EVOLVE, applications express their logic and required datasets in the form of workflows 

that can be automated, shared, refined, and maintained across groups of domain experts 

without significant IT expertise.
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EVOLVE has developed key technologies to advance these features into 
a high maturity level (respective software components have also been 
made available as open-source projects), boosting pilots and Proof-
of-Concepts (PoCs) significantly on many axes. After all, EVOLVE’s 
innovation is driven by its real-life applications, provided by 
industrial partners from seven different domains, that make use of 
massive data and require complex processing:

Optimizing agri production 

yield using numerical models 

and massive historic data.

Maritime surveillance at scale and high 

accuracy, by using massive observation and 

domain-specific data (described in more 

detail in Section 3).

 
 

 
 

 

 
Radiometric correction

and change detection

on Sentinel-2 images.
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This crucial focus on applications allows EVOLVE 

to realistically set the bar for what is possible 

today and what should be the target, based on 

technology projections, in the future.

In addition, the project has enlisted more than a 

dozen external PoCs, i.e. applications which were 

not part of the original planning and which are now 

running on the EVOLVE testbed for improving their 

productivity, dataset sizes, as well as processing 

times. EVOLVE aims at building an ecosystem 

around HPC-enabled BD processing, to disseminate 

knowledge and possibilities, foster innovation, but 

also solicit feedback and ensure continuity.

Improvement of public bus 

services that dominate 

transportation in Europe.

Automotive data-driven 

services for vehicle 

predictive maintenance.

Data-assisted automotive 

service development.

Advanced vehicle routing 

algorithms and mobility 

services optimization.
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T h e  E v o l v e  P l a t f orm2
In the EVOLVE platform (Fig. 1), the heterogeneous Hardware infrastructure is integrated into a single 

Execution environment using Kubernetes [2]. As a scalable, container-based substrate, Kubernetes hides 

the complexity of managing massive numbers of compute nodes, and has thus become the industry-

leading platform for supporting large-scale applications and complex processing pipelines dealing with 

enormous and diverse datasets.

To accomodate for the unique characteristics of EVOLVE pilots and PoCs, we have extended Kubernetes 

with novel workload placement and scheduling features, as well as a new storage abstraction, called the 

Unified Storage Layer (USL). We have also integrated a wide selection of BD, Cloud, and HPC software 

frameworks as Microservices, including a state-of-the art visualization service that extends to the Front 

end. A vertical, Monitoring layer collects runtime statistics from hardware and software components, to 

assist developers into understanding the performance characteristics of their applications, and to enable 

automated fine-tuning of container placement and scheduling.

The different layers of the EVOLVE infrastructure, as well as the EVOLVE-specific enhancements are briefly 

described in the following sections.

The EVOLVE platform (Fig. 1)

front end

dashboard notebooks workflows vizualize

microservices

execution
enviroment

ingest transform

kubernetes

resource management unified storage layer

process analyze

hardware
infrasctructure

Monitoring

CPUs GPUs FPGAs InfiniBand IME

2  Kubernetes: Production-Grade Container Orchestration. https://kubernetes.io
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Needs for endless computing power has spurred architectural innovations in the pursuit of more compute 

capabilities. The current state-of-the-art in HPC is to create heterogeneous computing environments, 

by integrating accelerators – in the form of GPUs, FPGAs or ASICs – in the building blocks of the overall 

infrastructure. Following this direction, the EVOLVE hardware platform adopts the following elements:

2.1 Hardware infrastructure

CPUs (Intel Xeon), characterized by a variety of features 

including NUMA and multiple cores.

GPUs (NVIDIA Tesla K20, P40, V100), supporting several 

programming models, like CUDA, OpenMP, OpenAcc, and OpenCL.

FPGAs (Altera Arria 10, Stratix 10), used via native HDL 

(VHDL, Verilog) and Intel OpenCL SDK. 
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Overall, the HPC cluster used in EVOLVE, combines 10 

identical compute nodes (each with 24 cores/48 threads

and 128 GB of RAM), with a complementary set of

5 accelerator nodes with similar characteristics,

that host the accelerators. 

All nodes are interconnected via NVIDIA Mellanox 

InfiniBand FDR links (56 Gb/s) and run Linux. The 

InfiniBand backbone, which uses a fat-tree interconnect 

topology to minimize the number of hops between computing 

nodes, is employed for both storage and computing. 

Storage to the cluster is provided by an external storage hierarchy, optimized both for capacity and 

performance. For capacity, there is a 120TB Lustre [3] filesystem, implemented with 2 NetApp FAS2700 

Series storage arrays. To accelerate the path from compute nodes to storage devices, data is accessed 

through DDN’s Infinite Memory Engine (IME) [4], a scale-out, software-defined, flash storage platform, 

that automatically optimizes and coordinates data movement from high-speed devices to the high-

volume back end.

3   Lustre. https://www.lustre.org/ 4   DDN. Infinite Memory Engine. https://www.ddn.com/products/ime-flash-native-data-cache/
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2.2.1 Resource management extensions.

Kubernetes uses a discrete, pluggable service, the scheduler, to assign pods to compute nodes, based on 

well-defined policies. The software stack of EVOLVE includes a series of respective extensions, which we 

use to apply custom placement and scheduling decisions:

2.2 Execution environment

All aforementioned practices outperform the default resource management schemes of 

Kubernetes, improving the performance of the scheduled workloads, by better balancing 

the usage of different components of the hardware platform.

 is able to efficiently place applications on a cluster of heterogeneous machines. Using a universal 

approach for every kind of workload behaviour and duration, the custom scheduler aims to 

maximize resource utilization and minimize application execution delays provoked by interference 

phenomena. Compared to priorwork,we monitor low-level metrics, describing micro-architectural 

events, which are capable of providing useful information for resources under contention [8], thus 

pinpointing to the origin of a system’s inability to serve the workloads efficiently.

provides an abstraction of Kubernetes primitives to domain job schedulers of frameworks, 

such as Apache Spark and TensorFlow. Those primitives allow such frameworks to 

optimize their scheduling over Kubernetes for performance. In the back end, the scoring 

module of the Kubernetes scheduler has been re-designed to use Volcano primitives in 

its ranking of the candidate nodes for every pod request that arrives from Volcano.

scheduler automatically calculates resources that a pod needs to meet a target 

performance. Unlike existing Kubernetes deployments, where users specify the amount 

of resources for their pods, Skynet expects users to enter target performance metrics 

and it uses a closed loop control mechanism to calculate an optimal resource allocation 

that allows pods to meet those targets. Skynet extends previous work [5], by dynamically 

adjusting application runtime profiles, based on metrics gathered during execution.

The Skynet 

The interference-aware custom scheduler [7]

Volcano [6] 

5  Y. Sfakianakis, C. Kozanitis, C. Kozyrakis, and A. Bilas. 2018. QuMan: Profile- Based Improvement of Cluster 

Utilization. ACM Trans. Archit. Code Optim. 15, 3, Article 27 (Aug. 2018), 25 pages. https://doi.org/10.1145/3210560

7  A. Tzenetopoulos, D. Masouros, S. Xydis, and D. Soudris. 2020. Interference-Aware Orchestration in Kubernetes. In High Performance Computing - ISC High 

Performance 2020 International Workshops, Frankfurt, Germany, June 21-25, 2020, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 12321), H. Jagode, 

H. Anzt, G. Juckeland, and H. Ltaief (Eds.). Springer, 321–330. https://doi.org/10.1007/978-3-030-59851-8_21

8  D. Masouros, S. Xydis, and D. Soudris. 2021. Rusty: Runtime Interference-Aware Predictive Monitoring for Modern Multi-Tenant Systems. IEEE Trans. Parallel 

Distributed Syst. 32, 1 (2021), 184–198. https://doi.org/10.1109/TPDS.2020.3013948

6   Volcano: A Kubernetes Native Batch System. 

https://github.com/volcano-sh/volcano
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2.2.2 Unified Storage Layer. 

During EVOLVE development, we had to cope 

with conflicting storage abstractions provided by 

the available hardware and systems software, and 

respective assumptions used by different Cloud 

and Big Data tools and frameworks. Pipeline stages 

may use diverse software frameworks that deal 

with storage in a completely different manner. To 

tackle the heterogeneity of APIs and programming 

libraries to interact with data, we designed and 

implemented the Unified Storage Layer (USL) for 

Kubernetes. 

The USL enables applications to be designed 

following the cloud-ready paradigm and to 

transparently benefit from potentially any storage 

solution available, ranging from high-performance 

file systems or key-value stores, to cloud based 

object storage. With the USL, workflow execution 

units are automatically provided with a broad range 

of endpoints, so that application developers can 

easily select where to store data depending on the 

unique storage characteristics of their application.

Karvdash [9]: The EVOLVE dashboard serves as the USL front end, by providing a user 

interface for configuring Datashim and H3 storage attachments. Karvdash also wires up a 

private and shared dataset per user by default.

Datashim [10]: The USL core, mounting the actual datasets to containers, thus unifying 

access to a diverse set of actual storage protocols and technologies.

H3 [11]: An embedded object store library, backed by a highperformance key-value store. 

H3 can either be embedded into applications, or accessed through Datashim as part of 

the unified storage offering.

USL components are stand-alone open source software 

frameworks, whose integration creates a unique software 

stack for data access in Kubernetes environments:
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USL simplifies workflows by completely replacing 

multiple data movement stages with a set of 

Dataset configuration directives (modelled as 

Kubernetes Custom Resource Definitions) that are 

defined as part of workflow initialization. 

USL provides an abstract form for defining varying 

types of storage endpoints, and attaches the 

corresponding data collections as filesystem 

mounts inside containers, preserving the files-

based data access pattern. These configuration 

directives can either be constructed by users 

manually, or setup through Karvdash.

The latter, as part of the default 

deployment, automatically configures a 

private “home” folder per user, as well 

as a cross-platform shared dataspace, and 

makes them accessible through a web-based 

front end (Fig. 2).

(Fig.2)

The “Files” tab

in Karvdash allows 

users to directly

interact with their 

“home” datasets via 

their browser.

9   Karvdash: A dashboard service for facilitating data science on Kubernetes. https://github.com/CARV-ICS-FORTH/karvdash

10  Datashim: A Kubernetes based framework for hassle free handling of datasets. https://github.com/datashim-io/datashim

11  H3: An embedded object store. https://github.com/CARV-ICS-FORTH/H3
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Datashim performs storage attachments by 

utilizing low-level, Kubernetes-compatible 

Container Storage Interface (CSI) plug-ins. 

Additionally, Datashim provides a set of caching 

plugins to speedup data-access. 

Through an experimental evaluation we have 

demonstrated that colocation of data and 

computation can affect the data access rates and 

thus the overall performance of an application, 

especially for data-intensive workloads such as 

Spark jobs or training of neural networks. 

To address this issue, we have implemented a 

cache-aware scheduling plugin for Volcano to 

place Datashim cache pods as close as possible

 to the respective Spark executors.

Proximity might not necessarily be with the actual 

disks that hold the data, but also with the gateway 

that Datashim uses for providing access to cached 

data. The matching is done by parsing Dataset 

information associated with a specific Spark job.

H3 is meant to ease application transition to high-performance key-value stores (like 

RocksDB [12], Redis [13], and Kreon [14]), by offering a simple object store API that 

translates respective commands to key-value operations, in order to decrease the 

latency of small data operations and facilitate the use of node-local storage devices 

and memory in workflow steps. H3 also implements a CSI plug-in for integration with 

Datashim, for allowing existing pipeline steps  to seamlessly exploit the functionality 

without code changes. 

With the seamless data 

abstraction provided by the 

USL, the user experience of 

dealing with data collections 

becomes more familiar and 

friendly, and workflows 

become portable, simpler to 

develop and deploy, without 

sacrificing performance.

13    Redis. https://redis.io/

14   A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas. 2018. An Efficient Memory-Mapped Key-Value Store for Flash Storage. In 

Proceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). 490–502. https://doi.org/10.1145/3267809.3267824

12   RocksDB. https://rocksdb.org/
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Especially for HPC, EVOLVE enables workflows to 

seamlessly incorporate MPI-based executables as 

processing stages, taking a concrete step towards 

integration of HPC and BD processing. We deploy 

on-demand virtual clusters — container-based 

HPC environments that allow MPI codes to run 

in Kubernetes, using the Slurm job manager 

[20] and a wide range of libraries and compilers, 

while maintaining direct access to the InfiniBand 

network present at physical nodes, as well as 

available GPUs and FPGAs. Each virtual cluster 

hosts a custom Slurm controller that communicates 

with Skynet to coordinate the actual placement of 

HPC jobs. Experimental results indicate that the 

virtual cluster construct retains the performance 

and scalability properties of the supporting physical 

infrastructure, while the unique resource allocation 

scheme guarantees (to a level) that HPC containers 

run unobstructed.

Software frameworks, as runtime components 

for workflow execution, are packaged up in 

containers as microservices, which are then used 

as building blocks for workflow steps. Most of the 

microservices handle compute-intensive tasks: 

data ingest/extraction, flexible and efficient data 

transformations, data processing with integrated 

custom HPC kernels, and incremental one-pass 

analytics over bounded data streams. 

During development of EVOLVE, we first identified 

state-of-the-art software frameworks to be included 

into the software stack, performed all necessary 

integration actions to make these frameworks 

easily accessible as workflow components, and 

demonstrated their applicability by providing 

example notebooks that use the high-level, user-

facing software components of the Front end layer. 

Special care has been taken so that provided microservices are compatible with the 

software components of other layers as well: the containerized executor instances 

of Kafka [15], Spark [16], TensorFlow [17], MPI [18], Dask [19], etc. preserve the user 

isolation/protection properties of the Execution framework (i.e., run in separate 

namespaces), use the custom Kubernetes resource management extensions where needed, 

and send performance metrics to Monitoring. More importantly, microservices exploit 

the HPC capabilities of the Hardware infrastructure: 

Fast storage, accelerators, and the high-speed,

low-latency network. 

2.3 Microservices

14
15   Apache Kafka. https://kafka.apache.org

18   MPI Forum. https://www.mpi-forum.org 19  Dask: Scalable analytics in Python. https://dask.org 20   Slurm Workload Manager. https://slurm.schedmd.com/documentation.html

16  Apache Spark. https://spark.apache.org 17   TensorFlow. https://www.tensorflow.org
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2.4.1 User experience. 

 EVOLVE users interact with the platform through 

Karvdash — the EVOLVE dashboard — and 

implement their applications in notebooks, 

using workflows that interface with platform 

microservices and the visualization component 

of the software stack. Karvdash, is a service 

management software for Kubernetes, which runs 

in Kubernetes as a service itself. It provides a web-

based graphical frontend to coordinate accesses 

to the platform, orchestrate  service execution in 

containers from pre-defined 

templates — including Zeppelin notebooks 

[21], interact with collections of data that are 

automatically attached to application

containers when launched (as part of the USL), 

and securely provision multiple services under 

one externally-accessible HTTPS endpoint. All 

dashboard resources are organized per-user, and 

each user is assigned to a corresponding, isolated 

Kubernetes namespace. Moreover, the dashboard 

provides web-based access to the private Docker 

registry for convenience.

In EVOLVE, we use Argo Workflows [22] as the workflow runtime. Additionally, we 

provide the evolve Python library [23], which allows composing workflows as 

code. One of the most significant features of Zeppelin is that it provides the 

capability to build custom interpreters. Thus, we have implemented a custom EVOLVE 

interpreter, for simplifying the definition and deployment of workflows with Argo.

The EVOLVE custom interpreter is based on Zeppelin’s Python interpreter and embeds 

the evolve library. This allows the programmatic handling of workflows alongside 

other management and data manipulation tasks through the same Zeppelin paragraphs.

2.4 Front end

15

21   Apache Zeppelin: Web-based notebook that enables data-driven, interactive data analytics 

and collaborative documents with SQL, Scala and more. https://zeppelin.apache.org

22   Argo Workflows. https://argoproj.github.io/projects/argo

23   The EVOLVE Python library. https://bitbucket.org/sunlightio/evolve_python_library/
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2.4.2 Visualization services. 

EVOLVE develops high-performance visualization 

services that help analysts navigate big data 

repositories across multiple metadata dimensions. 

These services are intended to complement but 

not compete with process-oriented monitoring and 

visualization frameworks such as Grafana [24] and

Kibana [25]. The goal is to render results of 

computational processes together with relevant 

knowledge automatically extracted from the public 

debate, in the form of digital content streams from 

news sites, social media platforms, etc. To provide 

the desired contextualization,

the services not only render the results, but also

perform complex aggregation, filtering, 

indexing, natural language processing, metadata 

enrichment, translation and knowledge graph 

alignment processes in the background. When 

implementing this ontextualization process, 

special emphasis has been placed on temporal and 

geographic dimensions, both in terms of rendering 

statistical data ingested through a REST API as 

well as the ability to put results in the context of 

stakeholder communication (by means of aligning 

metadata attributes, e.g. the geographic location).

16

Building upon earlier work of webLyzard in 

regard to visual analytics dashboards for big data 

applications [26], [27], [28], EVOLVE focuses on 

improving the visualization engine in line with 

the pilot requirements, including the automated 

extraction of pilot-specific metadata. There are 

two main front end components, a resultsfocused 

Visual Analytics Dashboard (VAD) (Fig. 3) and a 

processfocused Execution Dashboard (ED). On the 

back end, contextualizing data with external sources 

requires a tightly-knit infrastructure of services that 

bring together the required functionalities of data 

acquisition, data alignment and data visualization. 

Additionally, the on-demand nature of live 

documents for data computation as

inherent to the EVOLVE notebooks requires 

repository management for fully automated 

creation and cleanup of data repositories.

Ultimately, the goal is to allow external users to 

unlock the storytelling potential of the microservices 

with minimal effort, as a single RESTful API 

endpoint. To the notebook user, requesting a 

contextualized visualization is encapsulated in a 

single API request for ease of use.

24 Grafana: The open observability platform. https://www.grafana.com/

27  A. Scharl, D. Herring, W. Rafelsberger, A. Hubmann-Haidvogel, R. Kamolov, D. Fischl, M. Föls, and A. Weichselbraun. 2017. Semantic Systems and Visual Tools to 

Support Environmental Communication. IEEE Systems Journal 11, 2 (June 2017), 762–771. https://doi.org/10.1109/JSYST.2015.2466439

28   A. Brasoveanu, M. Sabou, A. Scharl, A. Hubmann-Haidvogel, and D. Fischl. 2016. Visualizing statistical linked knowledge for decision support. Semantic Web 8 

(11 2016), 113–137. https://doi.org/10.3233/SW-160225

25  Kibana: Explore, Visualize, Discover Data. https://www.elastic.co/kibana/

26  A. Scharl, A. Weichselbraun, M. Göbel, W. Rafelsberger, and R. Kamolov. 2016. Scalable Knowledge Extraction and Visualization for Web Intelligence. In 2016 49th 

Hawaii International Conference on System Sciences (HICSS). 3749–3757. https://doi.org/10.1109/HICSS.2016.467
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Detailed observation is instrumental in any experimental process, and a critical part in any product 

design cycle. Therefore, as an innovation testbed, the EVOLVE platform includes a vertical Monitoring 

layer to both stir the design, and to help end-users exploit the system in an efficient way. We focus 

monitoring on three axes:

We use standard open-source solutions for end-to-

end monitoring of both the hardware and software 

stack and make the results available via a graphical 

interface, or via API calls for other purposes 

(i.e., placement and scheduling decisions). Also, 

monitoring is not limited to depicting the current 

behavior; the EVOLVE platform also supports the 

observation of failures and failure recovery.

2.5 Monitoring

Processors, including node-level CPUs and accelerators;

Software stacks, with individual probes on different 

software middlewares used;

Storage, as it is critical to the performance

of application level workflows.

17

(Fig.3)

The “Files” tab

in Karvdash allows 

users to directly

interact with their 

“home” datasets via 

their browser.
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Conclusion3
HPC, Cloud and Big Data share a common point: 

the need for performance at scale. However, they 

differentiate by many aspects, most importantly 

the programming workflow and software stack. 

Their convergence has appeared as an elusive 

if not impossible promise; they are commonly 

thought of as distinct technologies remaining 

distant, frozen and immobile in their respective 

markets. The EVOLVE project challenges — 

in a very pragmatic way — the idea that a 

single computing infrastructure can integrate 

the best of all worlds; and is actually already 

pushing things in that direction, by building 

an heterogeneous computing platform 

in conjunction with the software 

components, that enables applications

to scale out in a flexible, transparent, 

and portable manner.
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