

H P C a n d C l o u d E n hanced
Testbed for Extracting
Value from Large-scale
Diverse Data

The EVOLVE Platform

Antony Chazapis

Institute of Computer Science,

FORTH

Heraklion, Greece

chazapis@ics.forth.gr

Jean-Thomas Acquaviva

DataDirect Networks

Paris, France

jtacquaviva@ddn.com

Angelos Bilas∗

Institute of Computer Science,

FORTH

Heraklion, Greece

bilas@ics.forth.gr

Georgios Gardikis

Space Hellas S.A.

Athens, Greece

ggar@space.gr

Christos Kozanitis

Institute of Computer Science,

FORTH

Heraklion, Greece

kozanitis@ics.forth.gr

Stelios Louloudakis

Sunlight.io

Heraklion, Greece

stelios.louloudakis@sunlight.io

Huy-Nam Nguyen

ATOS/Bull

Paris, France

Huy-Nam.Nguyen@atos.net

Christian Pinto

IBM Research Europe

Dublin, Ireland

christian.pinto@ibm.com

Arno Scharl

webLyzard technology

Vienna, Austria

scharl@weblyzard.com

Dimitrios Soudris

School of Electrical and Computer

Engineering, National Technical

University of Athens

Athens, Greece

dsoudris@microlab.ntua.gr

2

* Also with University of Crete, Computer Science Department.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org. CF ’21, May 11–13, 2021, Virtual Conference, Italy © 2021 Association for Computing Machinery. ACM ISBN 978-1-4503-

8404-9/21/05. . . $15.00

EVOLVE is a pan-European Innovation Action building a converged infrastructure to bring together the

HPC, Cloud, and Big Data worlds. EVOLVE’s platform and software stack supports large-scale, data-intensive

applications, driven primarily by industry requirements set by pilot and proof-of-concept use cases from

diverse fields. Given the unprecedented data growth we are experiencing, EVOLVE’s infrastructure is key in

enabling the cost-effective processing of massive amounts of data and the adaptation of multiple high-end

technologies, in an environment that fosters interoperability and enforces increased security.

Abstract

3

Processing large datasets is emerging as a main

challenge of modern compute infrastructures.

Applications require an increasing amount

of processing power as data grows at an

unprecedented rate [1]. Although tremendous

progress has happened over the past several years

on increasing productivity for data processing over

commodity systems and providing new services

with Big Data(BD) and Cloud technologies, the

projected data deluge brings business, consumers,

and the society in general at a new frontier:

Data analytics at scale requires extensive

computing infrastructure, either on-premise or

in the Cloud, which in turn demands extensive

expertise, both to operate, as well as to express

and tune application logic so it can exploit the full

benefits of the available hardware. Cost (CAPEX

as well as OPEX), a steep learning curve, and

portability, are the main barriers to scaling out

applications. This results in long turn-around times

for domain experts to actually process data and

therefore design new services; long turn-around

times for large industry, SMEs, and startups to

implement and deploy new services; and long

turn-around times for users and consumers, that in

many cases would prefer near-real-time responses.

How can we pro cess massive data

that require demanding computation?

O v e r v i e w1

1 Big Data Value Association (BDVA). 2017. European Big

Data Value Strategic Research and Innovation Agenda

(SRIA), Version 4.0. (10 2017). https://www. bdva.eu/sites/

default/files/BDVA_SRIA_v4_Ed1.1.pdf

4

Complex application orchestration, fully

containerized and controlled through our

workflow definition language.

A unified data management layer, that

allows users to transparently access

their local or Cloud-based datasets as

files, both through the dashboard and in

containers.

Custom, fine-grain resource allocation

and scheduling schemes, as well as

accelerator sharing methods and policies

– important steps forward in terms of

data center efficiency.

Tight accelerator integration with

BD frameworks, such as Spark, both

for batch processing and streaming

applications.

Seamless execution of HPC applications

as workflow stages, with Slurm

compatibility.

Embedded visualization modules with

innovative and responsive features,

allowing efficient and versatile

interaction with data.

Efficient monitoring of utilization,

performance, and QoS for the whole

wsystem and individual workflows.

Unique EVOLVE features include:

Workflows and data are manipulated through a

web-based dashboard, and code – expressed in a

portable notebook format – executes seamlessly

on HPC hardware, using a rich and versatile set

of Big Data processing frameworks. The EVOLVE

testbed is shared across applications using a

Kubernetes-based execution framework, where

all workflow stages are containerized, facilitating

ease of deployment, isolation, portability and

reproducibility. At the same time, the testbed

includes provisions for data protection (security

and integrity), the main reason that hinders shared

deployment in domains with sensitive data.

EVOLVE addresses these issues by offering a novel, integrated computing environment that boosts productivity

and allows interoperability, while maintaining hardware-specific performance benefits.

In EVOLVE, applications express their logic and required datasets in the form of workflows

that can be automated, shared, refined, and maintained across groups of domain experts

without significant IT expertise.

5

EVOLVE has developed key technologies to advance these features into
a high maturity level (respective software components have also been
made available as open-source projects), boosting pilots and Proof-
of-Concepts (PoCs) significantly on many axes. After all, EVOLVE’s
innovation is driven by its real-life applications, provided by
industrial partners from seven different domains, that make use of
massive data and require complex processing:

Optimizing agri production

yield using numerical models

and massive historic data.

Maritime surveillance at scale and high

accuracy, by using massive observation and

domain-specific data (described in more

detail in Section 3).

Radiometric correction

and change detection

on Sentinel-2 images.

6

This crucial focus on applications allows EVOLVE

to realistically set the bar for what is possible

today and what should be the target, based on

technology projections, in the future.

In addition, the project has enlisted more than a

dozen external PoCs, i.e. applications which were

not part of the original planning and which are now

running on the EVOLVE testbed for improving their

productivity, dataset sizes, as well as processing

times. EVOLVE aims at building an ecosystem

around HPC-enabled BD processing, to disseminate

knowledge and possibilities, foster innovation, but

also solicit feedback and ensure continuity.

Improvement of public bus

services that dominate

transportation in Europe.

Automotive data-driven

services for vehicle

predictive maintenance.

Data-assisted automotive

service development.

Advanced vehicle routing

algorithms and mobility

services optimization.

7

T h e E v o l v e P l a t f orm2
In the EVOLVE platform (Fig. 1), the heterogeneous Hardware infrastructure is integrated into a single

Execution environment using Kubernetes [2]. As a scalable, container-based substrate, Kubernetes hides

the complexity of managing massive numbers of compute nodes, and has thus become the industry-

leading platform for supporting large-scale applications and complex processing pipelines dealing with

enormous and diverse datasets.

To accomodate for the unique characteristics of EVOLVE pilots and PoCs, we have extended Kubernetes

with novel workload placement and scheduling features, as well as a new storage abstraction, called the

Unified Storage Layer (USL). We have also integrated a wide selection of BD, Cloud, and HPC software

frameworks as Microservices, including a state-of-the art visualization service that extends to the Front

end. A vertical, Monitoring layer collects runtime statistics from hardware and software components, to

assist developers into understanding the performance characteristics of their applications, and to enable

automated fine-tuning of container placement and scheduling.

The different layers of the EVOLVE infrastructure, as well as the EVOLVE-specific enhancements are briefly

described in the following sections.

The EVOLVE platform (Fig. 1)

front end

dashboard notebooks workflows vizualize

microservices

execution
enviroment

ingest transform

kubernetes

resource management unified storage layer

process analyze

hardware
infrasctructure

Monitoring

CPUs GPUs FPGAs InfiniBand IME

2 Kubernetes: Production-Grade Container Orchestration. https://kubernetes.io

8

Needs for endless computing power has spurred architectural innovations in the pursuit of more compute

capabilities. The current state-of-the-art in HPC is to create heterogeneous computing environments,

by integrating accelerators – in the form of GPUs, FPGAs or ASICs – in the building blocks of the overall

infrastructure. Following this direction, the EVOLVE hardware platform adopts the following elements:

2.1 Hardware infrastructure

CPUs (Intel Xeon), characterized by a variety of features

including NUMA and multiple cores.

GPUs (NVIDIA Tesla K20, P40, V100), supporting several

programming models, like CUDA, OpenMP, OpenAcc, and OpenCL.

FPGAs (Altera Arria 10, Stratix 10), used via native HDL

(VHDL, Verilog) and Intel OpenCL SDK.

9

Overall, the HPC cluster used in EVOLVE, combines 10

identical compute nodes (each with 24 cores/48 threads

and 128 GB of RAM), with a complementary set of

5 accelerator nodes with similar characteristics,

that host the accelerators.

All nodes are interconnected via NVIDIA Mellanox

InfiniBand FDR links (56 Gb/s) and run Linux. The

InfiniBand backbone, which uses a fat-tree interconnect

topology to minimize the number of hops between computing

nodes, is employed for both storage and computing.

Storage to the cluster is provided by an external storage hierarchy, optimized both for capacity and

performance. For capacity, there is a 120TB Lustre [3] filesystem, implemented with 2 NetApp FAS2700

Series storage arrays. To accelerate the path from compute nodes to storage devices, data is accessed

through DDN’s Infinite Memory Engine (IME) [4], a scale-out, software-defined, flash storage platform,

that automatically optimizes and coordinates data movement from high-speed devices to the high-

volume back end.

3 Lustre. https://www.lustre.org/ 4 DDN. Infinite Memory Engine. https://www.ddn.com/products/ime-flash-native-data-cache/

10

2.2.1 Resource management extensions.

Kubernetes uses a discrete, pluggable service, the scheduler, to assign pods to compute nodes, based on

well-defined policies. The software stack of EVOLVE includes a series of respective extensions, which we

use to apply custom placement and scheduling decisions:

2.2 Execution environment

All aforementioned practices outperform the default resource management schemes of

Kubernetes, improving the performance of the scheduled workloads, by better balancing

the usage of different components of the hardware platform.

 is able to efficiently place applications on a cluster of heterogeneous machines. Using a universal

approach for every kind of workload behaviour and duration, the custom scheduler aims to

maximize resource utilization and minimize application execution delays provoked by interference

phenomena. Compared to priorwork,we monitor low-level metrics, describing micro-architectural

events, which are capable of providing useful information for resources under contention [8], thus

pinpointing to the origin of a system’s inability to serve the workloads efficiently.

provides an abstraction of Kubernetes primitives to domain job schedulers of frameworks,

such as Apache Spark and TensorFlow. Those primitives allow such frameworks to

optimize their scheduling over Kubernetes for performance. In the back end, the scoring

module of the Kubernetes scheduler has been re-designed to use Volcano primitives in

its ranking of the candidate nodes for every pod request that arrives from Volcano.

scheduler automatically calculates resources that a pod needs to meet a target

performance. Unlike existing Kubernetes deployments, where users specify the amount

of resources for their pods, Skynet expects users to enter target performance metrics

and it uses a closed loop control mechanism to calculate an optimal resource allocation

that allows pods to meet those targets. Skynet extends previous work [5], by dynamically

adjusting application runtime profiles, based on metrics gathered during execution.

The Skynet

The interference-aware custom scheduler [7]

Volcano [6]

5 Y. Sfakianakis, C. Kozanitis, C. Kozyrakis, and A. Bilas. 2018. QuMan: Profile- Based Improvement of Cluster

Utilization. ACM Trans. Archit. Code Optim. 15, 3, Article 27 (Aug. 2018), 25 pages. https://doi.org/10.1145/3210560

7 A. Tzenetopoulos, D. Masouros, S. Xydis, and D. Soudris. 2020. Interference-Aware Orchestration in Kubernetes. In High Performance Computing - ISC High

Performance 2020 International Workshops, Frankfurt, Germany, June 21-25, 2020, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 12321), H. Jagode,

H. Anzt, G. Juckeland, and H. Ltaief (Eds.). Springer, 321–330. https://doi.org/10.1007/978-3-030-59851-8_21

8 D. Masouros, S. Xydis, and D. Soudris. 2021. Rusty: Runtime Interference-Aware Predictive Monitoring for Modern Multi-Tenant Systems. IEEE Trans. Parallel

Distributed Syst. 32, 1 (2021), 184–198. https://doi.org/10.1109/TPDS.2020.3013948

6 Volcano: A Kubernetes Native Batch System.

https://github.com/volcano-sh/volcano

11

2.2.2 Unified Storage Layer.

During EVOLVE development, we had to cope

with conflicting storage abstractions provided by

the available hardware and systems software, and

respective assumptions used by different Cloud

and Big Data tools and frameworks. Pipeline stages

may use diverse software frameworks that deal

with storage in a completely different manner. To

tackle the heterogeneity of APIs and programming

libraries to interact with data, we designed and

implemented the Unified Storage Layer (USL) for

Kubernetes.

The USL enables applications to be designed

following the cloud-ready paradigm and to

transparently benefit from potentially any storage

solution available, ranging from high-performance

file systems or key-value stores, to cloud based

object storage. With the USL, workflow execution

units are automatically provided with a broad range

of endpoints, so that application developers can

easily select where to store data depending on the

unique storage characteristics of their application.

Karvdash [9]: The EVOLVE dashboard serves as the USL front end, by providing a user

interface for configuring Datashim and H3 storage attachments. Karvdash also wires up a

private and shared dataset per user by default.

Datashim [10]: The USL core, mounting the actual datasets to containers, thus unifying

access to a diverse set of actual storage protocols and technologies.

H3 [11]: An embedded object store library, backed by a highperformance key-value store.

H3 can either be embedded into applications, or accessed through Datashim as part of

the unified storage offering.

USL components are stand-alone open source software

frameworks, whose integration creates a unique software

stack for data access in Kubernetes environments:

12

USL simplifies workflows by completely replacing

multiple data movement stages with a set of

Dataset configuration directives (modelled as

Kubernetes Custom Resource Definitions) that are

defined as part of workflow initialization.

USL provides an abstract form for defining varying

types of storage endpoints, and attaches the

corresponding data collections as filesystem

mounts inside containers, preserving the files-

based data access pattern. These configuration

directives can either be constructed by users

manually, or setup through Karvdash.

The latter, as part of the default

deployment, automatically configures a

private “home” folder per user, as well

as a cross-platform shared dataspace, and

makes them accessible through a web-based

front end (Fig. 2).

(Fig.2)

The “Files” tab

in Karvdash allows

users to directly

interact with their

“home” datasets via

their browser.

9 Karvdash: A dashboard service for facilitating data science on Kubernetes. https://github.com/CARV-ICS-FORTH/karvdash

10 Datashim: A Kubernetes based framework for hassle free handling of datasets. https://github.com/datashim-io/datashim

11 H3: An embedded object store. https://github.com/CARV-ICS-FORTH/H3

13

Datashim performs storage attachments by

utilizing low-level, Kubernetes-compatible

Container Storage Interface (CSI) plug-ins.

Additionally, Datashim provides a set of caching

plugins to speedup data-access.

Through an experimental evaluation we have

demonstrated that colocation of data and

computation can affect the data access rates and

thus the overall performance of an application,

especially for data-intensive workloads such as

Spark jobs or training of neural networks.

To address this issue, we have implemented a

cache-aware scheduling plugin for Volcano to

place Datashim cache pods as close as possible

 to the respective Spark executors.

Proximity might not necessarily be with the actual

disks that hold the data, but also with the gateway

that Datashim uses for providing access to cached

data. The matching is done by parsing Dataset

information associated with a specific Spark job.

H3 is meant to ease application transition to high-performance key-value stores (like

RocksDB [12], Redis [13], and Kreon [14]), by offering a simple object store API that

translates respective commands to key-value operations, in order to decrease the

latency of small data operations and facilitate the use of node-local storage devices

and memory in workflow steps. H3 also implements a CSI plug-in for integration with

Datashim, for allowing existing pipeline steps to seamlessly exploit the functionality

without code changes.

With the seamless data

abstraction provided by the

USL, the user experience of

dealing with data collections

becomes more familiar and

friendly, and workflows

become portable, simpler to

develop and deploy, without

sacrificing performance.

13 Redis. https://redis.io/

14 A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas. 2018. An Efficient Memory-Mapped Key-Value Store for Flash Storage. In

Proceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). 490–502. https://doi.org/10.1145/3267809.3267824

12 RocksDB. https://rocksdb.org/

14

Especially for HPC, EVOLVE enables workflows to

seamlessly incorporate MPI-based executables as

processing stages, taking a concrete step towards

integration of HPC and BD processing. We deploy

on-demand virtual clusters — container-based

HPC environments that allow MPI codes to run

in Kubernetes, using the Slurm job manager

[20] and a wide range of libraries and compilers,

while maintaining direct access to the InfiniBand

network present at physical nodes, as well as

available GPUs and FPGAs. Each virtual cluster

hosts a custom Slurm controller that communicates

with Skynet to coordinate the actual placement of

HPC jobs. Experimental results indicate that the

virtual cluster construct retains the performance

and scalability properties of the supporting physical

infrastructure, while the unique resource allocation

scheme guarantees (to a level) that HPC containers

run unobstructed.

Software frameworks, as runtime components

for workflow execution, are packaged up in

containers as microservices, which are then used

as building blocks for workflow steps. Most of the

microservices handle compute-intensive tasks:

data ingest/extraction, flexible and efficient data

transformations, data processing with integrated

custom HPC kernels, and incremental one-pass

analytics over bounded data streams.

During development of EVOLVE, we first identified

state-of-the-art software frameworks to be included

into the software stack, performed all necessary

integration actions to make these frameworks

easily accessible as workflow components, and

demonstrated their applicability by providing

example notebooks that use the high-level, user-

facing software components of the Front end layer.

Special care has been taken so that provided microservices are compatible with the

software components of other layers as well: the containerized executor instances

of Kafka [15], Spark [16], TensorFlow [17], MPI [18], Dask [19], etc. preserve the user

isolation/protection properties of the Execution framework (i.e., run in separate

namespaces), use the custom Kubernetes resource management extensions where needed,

and send performance metrics to Monitoring. More importantly, microservices exploit

the HPC capabilities of the Hardware infrastructure:

Fast storage, accelerators, and the high-speed,

low-latency network.

2.3 Microservices

14
15 Apache Kafka. https://kafka.apache.org

18 MPI Forum. https://www.mpi-forum.org 19 Dask: Scalable analytics in Python. https://dask.org 20 Slurm Workload Manager. https://slurm.schedmd.com/documentation.html

16 Apache Spark. https://spark.apache.org 17 TensorFlow. https://www.tensorflow.org

15

2.4.1 User experience.

 EVOLVE users interact with the platform through

Karvdash — the EVOLVE dashboard — and

implement their applications in notebooks,

using workflows that interface with platform

microservices and the visualization component

of the software stack. Karvdash, is a service

management software for Kubernetes, which runs

in Kubernetes as a service itself. It provides a web-

based graphical frontend to coordinate accesses

to the platform, orchestrate service execution in

containers from pre-defined

templates — including Zeppelin notebooks

[21], interact with collections of data that are

automatically attached to application

containers when launched (as part of the USL),

and securely provision multiple services under

one externally-accessible HTTPS endpoint. All

dashboard resources are organized per-user, and

each user is assigned to a corresponding, isolated

Kubernetes namespace. Moreover, the dashboard

provides web-based access to the private Docker

registry for convenience.

In EVOLVE, we use Argo Workflows [22] as the workflow runtime. Additionally, we

provide the evolve Python library [23], which allows composing workflows as

code. One of the most significant features of Zeppelin is that it provides the

capability to build custom interpreters. Thus, we have implemented a custom EVOLVE

interpreter, for simplifying the definition and deployment of workflows with Argo.

The EVOLVE custom interpreter is based on Zeppelin’s Python interpreter and embeds

the evolve library. This allows the programmatic handling of workflows alongside

other management and data manipulation tasks through the same Zeppelin paragraphs.

2.4 Front end

15

21 Apache Zeppelin: Web-based notebook that enables data-driven, interactive data analytics

and collaborative documents with SQL, Scala and more. https://zeppelin.apache.org

22 Argo Workflows. https://argoproj.github.io/projects/argo

23 The EVOLVE Python library. https://bitbucket.org/sunlightio/evolve_python_library/

16

2.4.2 Visualization services.

EVOLVE develops high-performance visualization

services that help analysts navigate big data

repositories across multiple metadata dimensions.

These services are intended to complement but

not compete with process-oriented monitoring and

visualization frameworks such as Grafana [24] and

Kibana [25]. The goal is to render results of

computational processes together with relevant

knowledge automatically extracted from the public

debate, in the form of digital content streams from

news sites, social media platforms, etc. To provide

the desired contextualization,

the services not only render the results, but also

perform complex aggregation, filtering,

indexing, natural language processing, metadata

enrichment, translation and knowledge graph

alignment processes in the background. When

implementing this ontextualization process,

special emphasis has been placed on temporal and

geographic dimensions, both in terms of rendering

statistical data ingested through a REST API as

well as the ability to put results in the context of

stakeholder communication (by means of aligning

metadata attributes, e.g. the geographic location).

16

Building upon earlier work of webLyzard in

regard to visual analytics dashboards for big data

applications [26], [27], [28], EVOLVE focuses on

improving the visualization engine in line with

the pilot requirements, including the automated

extraction of pilot-specific metadata. There are

two main front end components, a resultsfocused

Visual Analytics Dashboard (VAD) (Fig. 3) and a

processfocused Execution Dashboard (ED). On the

back end, contextualizing data with external sources

requires a tightly-knit infrastructure of services that

bring together the required functionalities of data

acquisition, data alignment and data visualization.

Additionally, the on-demand nature of live

documents for data computation as

inherent to the EVOLVE notebooks requires

repository management for fully automated

creation and cleanup of data repositories.

Ultimately, the goal is to allow external users to

unlock the storytelling potential of the microservices

with minimal effort, as a single RESTful API

endpoint. To the notebook user, requesting a

contextualized visualization is encapsulated in a

single API request for ease of use.

24 Grafana: The open observability platform. https://www.grafana.com/

27 A. Scharl, D. Herring, W. Rafelsberger, A. Hubmann-Haidvogel, R. Kamolov, D. Fischl, M. Föls, and A. Weichselbraun. 2017. Semantic Systems and Visual Tools to

Support Environmental Communication. IEEE Systems Journal 11, 2 (June 2017), 762–771. https://doi.org/10.1109/JSYST.2015.2466439

28 A. Brasoveanu, M. Sabou, A. Scharl, A. Hubmann-Haidvogel, and D. Fischl. 2016. Visualizing statistical linked knowledge for decision support. Semantic Web 8

(11 2016), 113–137. https://doi.org/10.3233/SW-160225

25 Kibana: Explore, Visualize, Discover Data. https://www.elastic.co/kibana/

26 A. Scharl, A. Weichselbraun, M. Göbel, W. Rafelsberger, and R. Kamolov. 2016. Scalable Knowledge Extraction and Visualization for Web Intelligence. In 2016 49th

Hawaii International Conference on System Sciences (HICSS). 3749–3757. https://doi.org/10.1109/HICSS.2016.467

17

Detailed observation is instrumental in any experimental process, and a critical part in any product

design cycle. Therefore, as an innovation testbed, the EVOLVE platform includes a vertical Monitoring

layer to both stir the design, and to help end-users exploit the system in an efficient way. We focus

monitoring on three axes:

We use standard open-source solutions for end-to-

end monitoring of both the hardware and software

stack and make the results available via a graphical

interface, or via API calls for other purposes

(i.e., placement and scheduling decisions). Also,

monitoring is not limited to depicting the current

behavior; the EVOLVE platform also supports the

observation of failures and failure recovery.

2.5 Monitoring

Processors, including node-level CPUs and accelerators;

Software stacks, with individual probes on different

software middlewares used;

Storage, as it is critical to the performance

of application level workflows.

17

(Fig.3)

The “Files” tab

in Karvdash allows

users to directly

interact with their

“home” datasets via

their browser.

18

Conclusion3
HPC, Cloud and Big Data share a common point:

the need for performance at scale. However, they

differentiate by many aspects, most importantly

the programming workflow and software stack.

Their convergence has appeared as an elusive

if not impossible promise; they are commonly

thought of as distinct technologies remaining

distant, frozen and immobile in their respective

markets. The EVOLVE project challenges —

in a very pragmatic way — the idea that a

single computing infrastructure can integrate

the best of all worlds; and is actually already

pushing things in that direction, by building

an heterogeneous computing platform

in conjunction with the software

components, that enables applications

to scale out in a flexible, transparent,

and portable manner.

@evolve_h2020 www.evolve-h2020.eu
European Union's Horizon 2020 research and
innovation programme under grant agreement
No 825061

