
An Efficient Memory-Mapped Key-Value Store for Flash
Storage

Anastasios Papagiannis*

Institute of Computer Science, FORTH
Heraklion, Greece
apapag@ics.forth.gr

Giorgos Saloustros
Institute of Computer Science, FORTH

Heraklion, Greece
gesalous@ics.forth.gr

Pilar González-Férez
Department of Computer Engineering, University of

Murcia, Spain
pilargf@um.es

Angelos Bilas†

Institute of Computer Science, FORTH
Heraklion, Greece
bilas@ics.forth.gr

ABSTRACT

Persistent key-value stores have emerged as a main component
in the data access path of modern data processing systems.
However, they exhibit high CPU and I/O overhead. Today,
due to power limitations it is important to reduce CPU
overheads for data processing.

In this paper, we propose Kreon, a key-value store that
targets servers with flash-based storage, where CPU over-
head and I/O amplification are more significant bottlenecks
compared to I/O randomness. We first observe that two
significant sources of overhead in state-of-the-art key-value
stores are: (a) The use of compaction in LSM-Trees that
constantly perform merging and sorting of large data seg-
ments and (b) the use of an I/O cache to access devices,
which incurs overhead even for data that reside in memory.
To avoid these, Kreon performs data movement from level
to level by performing partial instead of full data reorganiza-
tion via the use of a full index per-level. In addition, Kreon
uses memory-mapped I/O via a custom kernel path with
Copy-On-Write.

We implement Kreon as well as our custom memory-
mapped I/O path in Linux and we evaluate Kreon using
commodity SSDs with both small and large datasets (up to 6
billion keys). For a large dataset that stresses I/O, Kreon re-
duces CPU cycles/op by up to 5.8x, reduces I/O amplification
for inserts by up to 4.61x, and increases insert ops/s by up

*Also with the Department of Computer Science, University of Crete,
Greece
†Also with the Department of Computer Science, University of Crete,
Greece

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267824

to 5.3x, compared to RocksDB, a state-of-the-art key-value
store that is broadly used today.

CCS CONCEPTS

• Information systems → Key-value stores; Flash mem-
ory; B-trees; Hierarchical storage management ; • Software
and its engineering → Virtual memory ;

KEYWORDS

Key-Value Stores, LSM-Tree, Memory-Mapped I/O, mmap,
SSD, Copy-On-Write

ACM Reference Format:

Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez,
and Angelos Bilas. 2018. An Efficient Memory-Mapped Key-Value

Store for Flash Storage. In Proceedings of SoCC ’18: ACM Sym-

posium on Cloud Computing, Carlsbad, CA, USA, October 11–13,
2018 (SoCC ’18), 13 pages.

https://doi.org/10.1145/3267809.3267824

1 INTRODUCTION

Persistent key-value stores [1, 12, 17, 18] are a central compo-
nent for many analytics processing frameworks and data serv-
ing systems. These systems are considered as write-intensive
because they typically exhibit bursty inserts with large vari-
ations in the size of data items [7, 37]. To better serve write
operations, key-value stores have shifted from the use of
B-trees [3], as their core indexing structure, to a group of
structures known as write-optimized indexes (WOIs) [23].
This transition took place because even though B-trees [3]
are asymptotically optimal in the number of block transfers
required for point and range queries their write performance
degrades significantly as the index grows [24].

A prominent data structure in the WOIs group is LSM-
Tree [31]. LSM-Tree has two important properties: (a) it
amortizes device write I/O operations (I/Os) over several
insert operations and (b) it is able to issue only large I/Os
to the storage devices for both reads and writes, essentially
resulting in sequential device accesses. These properties have
made LSM-Tree appropriate for hard disk drives (HDDs)
that suffer from long seek times and their throughput drops
by more than two orders of magnitude in the presence of

490

https://doi.org/10.1145/3267809.3267824
https://doi.org/10.1145/3267809.3267824

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA A. Papagiannis et al.

random I/Os. However, these desirable properties come at the
expense of significant CPU overhead and I/O amplification.
LSM-Tree needs to constantly merge and sort large data
segments, operations that lead to both high CPU utilization
and increased I/O traffic [33, 41].

In addition, modern key-value stores incur significant CPU
overhead for caching data in their address space [21]. Key-
value stores need to cache data in user-space to avoid frequent
user-kernel crossings and accesses to devices. Therefore, at
runtime, there is a need to maintain a lookup structure
for data items that reside in memory. Lookup operations
occur in the common path and are required not only for
misses but also for hits, when data reside in memory. These
common path lookup operations incur significant cost in
CPU cycles. Harizopoulos et.al. [21] claim that about one-
third of the total CPU cycles of a database system is spent
in managing the user-space cache when the dataset fits in
memory. Furthermore, the cache needs to manage I/O to
the devices via the system call interface that is expensive for
fine-grain operations and requires data copies for crossing
the user-kernel boundary. In our work, we find that cache
and system call overheads in RocksDB [17], a state-of-the-art
persistent key-value store, are up to 28% of the total CPU
cycles used (Table 3).

With current technology limitations and trends, these two
issues of high CPU utilization and I/O amplification are
becoming a significant bottleneck for keeping up with data
growth. Server CPU is the main bottleneck in scaling today’s
infrastructure due to power and energy limitations [25, 28,
36]. Therefore, it is important to increase the amount of
data each CPU can serve, rather than rely on increasing the
number of CPUs in the datacenter. In this context, flash-
based storage, such as solid state drives (SSDs), introduces
new opportunities by narrowing the gap between random
and sequential throughput, especially at higher queue depths
(number of concurrent I/Os). Figure 1 shows the throughput
of an SSD and two NVMe devices with random I/Os and
increasing request size. At a queue depth of 32, an I/O
request size of 32 KB for SSDs and 8 KB for NVMe achieve
almost the maximum device throughput. Therefore, increased
traffic due to I/O amplification is becoming a more significant
bottleneck than I/O randomness. This trend will be even
more pronounced with emerging storage devices that aim to
achieve sub-𝜇s latencies.

In this paper we present Kreon, a key-value store that
aims to reduce CPU overhead and I/O traffic by trading I/O
randomness. Kreon combines ideas from LSM [31] (multilevel
structure), bLSM [37] (B-Tree index), Atlas/WiscKey [25,
29] (separate value log), and Tucana [32] memory mapped
I/O. Additionally, it uses a fine-grain spill mechanism which
partially reorganizes levels to provide high insertion rates
and reduce CPU overhead and I/O traffic. Kreon uses a
write optimized data structure that is organized in N levels,
similar to LSM-Tree, where each level i acts as a buffer for
the next level i+1. To reduce I/O amplification, Kreon does
not operate on sorted buffers, but instead it maintains a B-
tree index within each level. As a result, it generates smaller

 0

 0.5

 1

 1.5

 2

 2.5

 3

4 8

1
6

3
2

2
5
6

1
0
2
4

T
h
ro

u
g
h
p
u

t
(G

B
/s

)

Request Size (KB)

Read

4 8

1
6

3
2

2
5
6

1
0
2
4

Request Size (KB)

Write

Samsung-SSD

Samsung-NVMe

Intel-NVMe

Figure 1: Throughput vs. block size (using iodepth
32) for Samsung SSD 850 Pro 256 GB, Samsung
950 Pro NVMe 256 GB, and Intel Optane P4800X
NVMe 375 GB devices, measured with FIO [2].

I/O requests in favor of reduced I/O amplification and CPU
overhead. Kreon still requires and uses multiple levels to
buffer requests and amortize I/O operations.

Furthermore, Kreon uses memory-mapped I/O to perform
all I/O between memory and (raw) devices. Memory-mapped
I/O essentially replaces cache lookups with valid memory
mappings, eliminating the overhead for data items that are
in memory. Misses incur a page fault and require an I/O op-
eration that happens directly from memory without copying
data between user and kernel space. However, the asynchro-
nous nature of memory-mapped I/O means that I/O happens
at page granularity, resulting in many and small I/Os, espe-
cially for read operations. In addition, memory-mapped I/O
does not provide any type of consistency, recoverability, nor
the ability to tune I/O for specific needs. To overcome these
limitations, we implement a custom memory-mapped I/O
path, kmmap, as a Linux kernel module. kmmap addresses
these issues and provides all the benefits of memory-mapped
storage: it removes the need to use DRAM caching both in
kernel and user space, eliminates data copies between kernel
and user space, and removes the need for pointer translation.

We implement Kreon and evaluate its performance by using
YCSB and large datasets of up to 6 billion keys. We compare
Kreon with RocksDB [17], a state-of-the-art, LSM-Tree based,
persistent key-value store which has lately been optimized
for SSDs [13]. Our results show that using both datasets that
stress I/O and datasets that fit in memory, Kreon reduces
the amount of cycles/op by up to 8.3x. Additionally, Kreon
reduces I/O amplification for insert-intensive workloads by
up to 4.6x and increases ops/s by up to 5.3x. Finally, our
analysis of CPU overheads shows that a saturated Kreon
server can achieve up to 2.4M YCSB insert requests/s.

Overall, the contributions of this paper are:

491

An Efficient Memory-Mapped Key-Value Store for Flash Storage SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

(1) The combination of multilevel data organization with
full indexes at each level and a fine-grain spill mecha-
nism that all together reduce CPU overhead and I/O
traffic at the expense of increased I/O randomness.

(2) The design and implementation of kmmap a custom
memory-mapped I/O path to reduce the overhead of
explicit I/O and address shortcomings of the native
mmap path in Linux for modern key-value stores.

(3) The implementation and detailed evaluation of a full
key-value store compared to a state-of-the-art key-value
store in terms of absolute performance, CPU and I/O
efficiency, execution time breakdown, tail latencies, and
device behavior.

The rest of this paper is organized as follows: Section 2
presents our design and implementation of Kreon. Section 3
presents our evaluation methodology and experimental re-
sults. Section 4 reviews related work and Section 5 concludes
the paper.

2 DESIGN

2.1 Overview

Kreon, similar to Atlas [25], Tucana [32], and Wisckey [29],
stores key-value pairs in a log to avoid data movement during
reorganization from level to level. It organizes its index in
multiple levels of increasing size and transfers data between
levels in batches to amortize I/O costs, similar to LSM-Tree.
Unlike LSM-Tree, within each level, it organizes keys in a
B-tree with leaves of page granularity similar to bLSM [37].
However, unlike bLSM, Kreon transfers data between levels
via a spill operation, rather than full reorganization of the
data in the next level. Spills are a form of batched data
compaction that merge keys of two consecutive levels [𝐿𝑖,
𝐿𝑖 + 1]. However, spills do not read the entire 𝐿𝑖+1 during
merging with 𝐿𝑖 and do not reorganize data and keys on
a sequential part of the device [37]. Instead, Kreon spills
read/write level 𝐿𝑖+1 partially using the full B-tree index of
each level.

The trade-off is that during spills, Kreon generates random
read I/O requests at large queue depth (high I/O concurrency)
to significantly reduce I/O traffic and CPU overhead. On the
other hand write I/O requests are relative large for writing
updated parts of 𝐿𝑖+1 index. This is because Kreon B-tree
uses Copy-on-Write for persistence [19] and a custom segment
allocator so updated leaves are written close on the device.

Furthermore, Kreon uses memory mapped I/O to elimi-
nate redundant copies between kernel and user space and
constant pointer translation. Kreon’s memory-mapped I/O
path is designed to provide efficient support for managing
I/O memory addressing shortcomings of the default mmap
path in the Linux kernel. These shortcomings are: (a) It does
not provide explicit control over data eviction, as with an
application-specific cache, (b) it results in an I/O even for
pages that include garbage, and (c) it employs eager evictions
to free memory, which results in excessive I/O, in order to
avoid starving other system components.

Figure 2 depicts the architecture of Kreon showing two
levels of indexes, the key-value log, and the device layout.
Next, we discuss our design for the system index and memory-
mapped I/O in detail.

2.2 Index Organization

Kreon offers a dictionary API (insert, delete, update, get,
scan) of arbitrary sized keys and values stored in groups
named regions. Each region can map either to a table or
shards of the same table. For each region it stores key-value
pairs in a single append-only key-value log [29, 32] and keeps
a multilevel index. The index in each level is a B-tree [3],
which consists of two types of nodes: internal and leaf nodes.
Internal nodes keep a small log where they store pivots,
whereas leaf nodes store key entries. Each key entry consists
of a tuple with a pointer to the key-value log and a fixed-size
key prefix. Prefixes are the first M bytes of the key used for
key comparisons inside a leaf. They reduce significantly I/Os
to the log since leaves constitute the vast majority of tree
nodes. If the effectiveness of prefixes is reduced due to low
entropy of the keys, existing techniques discuss how they can
be recomputed [4].

During inserts, Kreon appends the key-value pair to the
key-value log, then it performs a top-down traversal in its 𝐿0

B-tree, from the root to the corresponding leaf, and adds a
key entry to the leaf. Get operations examine hierarchically
levels from 𝐿0 to 𝐿𝑁 and return the first match. Since inserts
propagate with the same order as get operations, the version
of the retrieved key is the most recent. Delete operations
mark keys with a tombstone and defer the actual delete
operation. During system operation we use the marked key
entries for subsequent inserts that reuse the index entry
and mark as free the deleted (old) key-value pair in the log.
Marked and unused entries in the index are reclaimed during
spills. Marked space in the log is reclaimed asynchronously,
as discussed in Section 2.2.2. Update operations are similar
to a combined insert and delete. Scan operations create a
scanner per-level and use the index to fetch keys in sorted
order. They combine the results of each level to provide a
global sorted view of the returned keys.

Each region supports a single-writer/multiple-readers con-
currency model. Readers operate concurrently with writers
using Lamport counters [26] per tree node for synchroniza-
tion. Scans, similar to other systems [17], access all data
inserted to the system up to the scanner creation time and
they operate on an immutable version of each tree which is
facilitated by the Copy-On-Write approach used by Kreon
(Section 2.4).

Similar to LSM-Tree, 𝐿0 in Kreon always resides entirely
in memory. Portions of 𝑙𝑒𝑣𝑒𝑙𝑠 ≥ 1 are brought in memory on
demand. Kreon enforces memory placement rules for different
levels by using kmmap and explicit priorities (Section 2.3).

2.2.1 Spill Operations. When level i, 𝐿𝑖, fills up beyond a
threshold, Kreon merges 𝐿𝑖 into 𝐿𝑖+1 via a spill operation.
Spills are conceptually similar to LSM-Tree compactions [17,
18, 37], however, they operate differently. Spills avoid sorting

492

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA A. Papagiannis et al.

. . .

. . .

KV KV KV KV KV KV

L0
L1

Device Layout

Level-0

Level-1 Key-Value Log

Superblock Bitmap

. . .

Spill

P
o

in
te

r

P
re

!
x

P
o

in
te

r

P
re

!
x

Leaf Node

Free Space

Figure 2: The main structures of Kreon showing two
levels of indexes, the key-value log, and the device
layout. Dashed rectangles include portions of the
data structures that are kept in memory via kmmap.

by using the B-tree of the level to scan 𝐿𝑖 keys in lexicographic
order and to insert them in 𝐿𝑖+1. Spills effectively move a
large portion of keys from one level to the next. This batching
of insert operations results in amortizing device I/Os over
multiple keys due to the lexicographic retrieval of 𝐿𝑖 keys:
Kreon fetches a leaf of 𝐿𝑖+1 once and performs all updates in
the batch related to this leaf before writing it back to storage.
Furthermore, Kreon spills involve only metadata while data
remain in the append-only log. Compared to LSM based
key-value stores [17, 27, 37], where compactions move and
reorganize the actual data as well, this reduces overhead at
the expense of leaving unorganized data on the device.

During spills, Kreon produces random and relatively small
read requests (4 KB) for leaves of 𝐿𝑖+1. However, due to the
use of Copy-on-Write in Kreon (Section 2.4) writes to the next
level happen always to newly allocated blocks within contigu-
ous regions of the device, which results in efficient merging
of write I/Os into larger requests. Additionally, during spills,
Kreon creates many concurrent I/Os by using multiple spill
threads.

For spills to be effective, each level needs to be able to
buffer a substantial amount of keys compared to the size of
the lower (and larger) level, similar to compactions in LSM-
Tree. We determine empirically that buffering about 5-10%
of the metadata of the next level (key-value pairs themselves
are not part of the indexes) results in effective amortization
of I/O operations. This growth factor of 10-20x between
successive levels refers only to metadata and depends also on
the distribution of the inserted keys. Zipf-like distributions,
that are considered more typical today compared to uniform,
behave well with buffering a (relatively) small percentage of
the next level. We evaluate the impact of the growth factor
in Section 3.5.

To achieve bounded latency for inserts during spills, Kreon
allows inserts to 𝐿0 to be performed concurrently with spills,
as follows. It creates a new 𝐿′

0 tree where it performs new
inserts, while spilling from 𝐿0 to 𝐿1. Pages freed from the
spill operation can be reused by the new 𝐿′

0 index. Therefore,
𝐿′

0 grows at the same rate as 𝐿0 shrinks. Freeing pages from
the old index and adding them to the new index involves
memory unmap and remap operations (via kmmap) but no
device I/O.

2.2.2 Device Layout and Access. Kreon manages storage
space as a set of segments. Each segment is a contiguous range
of blocks on a device or a file. To further reduce overhead
we access devices directly rather than use a file system in
between. Our measurements show that files result in a 5-10%
reduction in throughput due to file system overhead. Each
segment hosts multiple regions and it has its own allocator
to manage free space.

Kreon’s allocator stores its metadata at the beginning of
each segment, which consists of a superblock and a bitmap.
The superblock keeps pointers to the latest consistent state of
the segment and its regions. The bitmap contains information
about the allocation status (free or reserved) of each 4 KB
block. The bitmap is accessed directly via an offset and at
low overhead, while for searches we use efficient bit parallel
techniques [5].

Kreon allocates space eagerly for regions in large units,
currently 2 MB, consuming them incrementally in smaller
units. This approach avoids frequent calls to the allocator
that is shared across regions in each segment. It also im-
proves average write I/O size by letting each region grow in
a contiguous part of the device.

Similarly, the key-value log in Kreon is organized in large
chunks, also 2 MB. At the start of each chunk we keep meta-
data about the garbage bytes as done in other systems [30].
Delete operations update the deleted bytes counter of the
corresponding chunk. When this counter reaches a threshold
the valid key-value pairs are moved to the end of the log. We
locate these keys in the index via normal lookups and we
update the leaf pointers accordingly. Finally, we release the
chunk to be available for subsequent allocations.

2.2.3 Partial Reorganization. Scan operations in Kreon
for small key-value pairs (less than 4 KB) produce read
amplification due to page size access granularity. To address
this, Kreon reorganizes data during scan operations, at leaf
granularity. Reorganization takes place only for 𝐿 ≥ 1 leaves,
since 𝐿0 leaves are always in memory. During reorganization
the key-value pairs belonging to the same leaf are written in
a continuous region of the key-value log and their previous
space is marked free. The reorganization criterion is currently
based on a counter per leaf, which is incremented every
time a leaf is written. During scans, if this counter exceeds
a threshold (currently, half the leaf capacity) the leaf is
reorganized and the counter is reset. We leave as future work
additional adaptive policies for data reorganization.

493

An Efficient Memory-Mapped Key-Value Store for Flash Storage SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

2.2.4 Number of Levels. In our work, we claim that two
levels in Kreon are adequate for most practical cases, given
current DRAM and Flash prices. If we assume a growth
factor 𝑅 of about 10-20x between levels, we can calculate
the dataset that can be handled with 𝑀 bytes of memory
devoted to 𝐿0, which needs to fit in memory. If we assume
that space amplification in B trees is 1.33 [24] and 𝑁 keys
are buffered in 𝐿0 then the size of 𝐿0 is 𝑀 = 1.33 *𝑁 * 𝑃𝑘,
where 𝑃𝑘 is the size of the metadata for each key (pointer and
prefix). Kreon uses 20 bytes of metadata for each key, which
results in 𝑀 = 26 * 𝑁 . Similarly, the size of the dataset is
𝐷 = 𝑅*𝑁 *(𝑆𝑘+𝑆𝑣), where 𝑆𝑘 and 𝑆𝑣 are the size of the keys
and values respectively, in the dataset. If we conservatively
assume 𝑅 = 10, 𝑆𝑘 = 10, and 𝑆𝑣 = 100, then 𝐷 = 1100 *𝑁
and 𝑀/𝐷 = 0.02. However, more typical sizes for keys and
values are 𝑆𝑘 = 20 and 𝑆𝑣 = 1000. If we also assume 𝑅 = 20,
then 𝐷 = 20600 *𝑁 and 𝑀/𝐷 = 0.001. Assuming that the
cost ratio of DRAM over Flash is about 10x per GB, then
the cost of DRAM for 𝐿0 in a 2-level Kreon configuration is
conservatively 20% (M/D=0.02) cost of Flash to store the
data and more realistically 1% (D/M=0.001) or less.

Similar to our analysis, previous work has claimed that
three levels are adequate for most purposes [27, 37]. However,
in previous cases the index contains the key-value pairs as
well, while in Kreon key-value pairs are placed in a separate
log, further reducing the index size. Finally, if two levels
are not adequate, Kreon introduces additional levels to the
hierarchy. In this case however, there will be a need to also
provide bloom filters for avoiding out of memory lookups for
all levels, similar to other systems [11, 17, 37].

2.3 Memory-Mapped I/O

Most key-value stores and other systems that handle data use
explicit I/O to access storage devices or files with read/write
system calls. In many cases, they also employ a user-space
cache as part of the application to minimize accesses to
storage devices and user-kernel crossings for performance
purposes. The use of a user-space cache is important to avoid
frequent system calls for lookup operations that need to occur
for every data item, regardless if it eventually hits or misses.
However, even the use of an application user-level cache
incurs significant overhead in the common path [21, 22, 32].

The use of memory-mapped I/O in Kreon reduces CPU
overhead related to the I/O cache in three ways: (a) It elimi-
nates cache lookups for hits by using valid virtual page map-
pings. Memory-mapped I/O does not require cache lookups
because virtual memory mappings distinguish data that are
present in memory from data that are only located on the
device. All device data are mapped to the application ad-
dress space but only data that are present in memory have
valid virtual memory mappings. Accesses to data that are not
present in memory result in page faults that are then handled
by mmap. Given that many operations in key-value stores,
such as get operations with a Zipf distribution, complete from
memory, Kreon avoids all related cache lookup overheads. (b)
There is no need to copy data between user and kernel space

when performing I/O. Pages used for data in memory are
used directly to perform I/O to and from the storage devices.
(c) There is no need to serialize/deserialize data between
memory and the storage devices. Finally, memory-mapped
I/O uses a single address space for both memory and storage,
which eliminates the need for pointer translation between
memory and storage address spaces and therefore, the need
to serialize and deserialize data when transferring between
the two address spaces.

2.3.1 Kreon’s Memory-Mapped I/O. Kreon provides its
own custom memory-mapped I/O path to address the short-
comings of mmap in Linux.

First, in mmap there is no explicit control over data evic-
tion, as with an application-specific cache. Linux uses an
LRU-based policy, which may evict useful pages, for instance,
pages of 𝐿0 instead of 𝐿1 pages. 𝐿0 has to reside in main
memory to amortize write I/O operations. Linux mmap does
not provide a mechanism to achieve this. A possible solution
is to lock important pages with mlock. However, Linux does
not allow a large number of pages to be locked by a single
process because this affects other parts of the system.

Second, each write operation in an empty page is effectively
translated to a read-modify-write because mmap does not
have any information about the status (allocated or free) of
the underlying disk page and the intended use. This results
in excessive device I/O. Instead, if applications can inform
mmap whether a page contains garbage and will be written
entirely, mmap can map this page without reading it first
from the device, eliminating unnecessary read traffic.

Third, mmap employs aggressive evictions based on mem-
ory usage and time elapsed since pages marked as dirty to
free memory and avoid starving other system components.
Mapping large portions of the application virtual address
space creates pressure to the virtual memory subsystem and
results in unpredictable use of memory and bursty I/O. Fur-
thermore, eager and uncoordinated evictions do not facilitate
the creation of large I/Os through merging. Empirically, we
often observe large intervals (of several 10s of seconds) where
the system freezes while it performs I/O with mmap and
applications do not make progress. Furthermore, we observe
similar behaviour with msync. This unpredictability and large
periods of inactivity are an important problem for key-value
stores that serve data to online, user-facing applications.

To overcome these limitations, we implement a custom
mmap, as a Linux kernel module, called kmmap. Figure 3
shows the overall design and data structures of kmmap.

Kmmap bypasses the Linux page cache and uses a priority-
based FIFO replacement policy. As priority we define a small,
per-page number (0 to 255). During memory pressure, a page
with a higher priority is preferred for eviction. Priorities are
kept only in memory and are set explicitly by Kreon with
ioctl calls. Priorities are set as follows: Kreon assigns priority
0 to index nodes of 𝐿0, 1 to index nodes of 𝐿1, 2 to leaf nodes
of 𝐿1, and 3 to the log. 𝐿0 fits in memory and it will not be
evicted. Generally if we have more than two levels 𝐿0 always
uses priority 0 and the log maximum priority. We calculate

494

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA A. Papagiannis et al.

User Process

Page Fault

Bank 0 Bank N-1. . .

P
ri

m
a

ry
 Q

u
e

u
e

Eviction Queue

Fr
e

e
 P

a
g

e
 P

o
o

l

H
it

 P
at

h

Miss Path

Device

R
e

co
v

e
ry

 P
a

th

Dirty

Tree

0 N...

Eviction Path

Figure 3: The main structures of kmmap.

the priority of level 𝐿𝑁 as (2 *𝑁 − 1) for index nodes and
(2 *𝑁) for leaves.

To increase parallelism, kmmap organizes memory in inde-
pendent banks, similar to DI-MMAP [14]. Pages are mapped
to banks by hashing the page fault address. To place con-
secutive pages in the same bank, the page fault address is
first shifted. Unlike DI-MMAP, kmmap uses fine-grain lock-
ing inside banks, which results in higher concurrency and
eliminates periods of inactivity (long freezes).

When Kreon accesses a page (for read or write), that does
not reside in main memory, a page fault occurs. On a page
fault, kmmap retrieves a free page from an in-memory list
(Free Page Pool), it reads the data from the device if required,
and finally enqueues the page to the Primary Queue based
on its priority. kmmap keeps a separate FIFO per priority
inside the Primary Queue. In the case where the Primary
Queue is full of pages, it dequeues a fixed number of entries
for batching purposes, with preference to entries with higher
priority. Then it unmaps them from the process address space
and moves them into the Eviction Queue. The Eviction Queue
is organized as an in-memory red-black tree structure, keeping
keys sorted based on page offset at the device. For evictions,
it traverses the Eviction Queue and merges consecutive pages
to generate as large I/Os as possible. It keeps dirty pages
that belong to the Primary Queue or the Eviction Queue
in another in-memory red-black tree structure (Dirty Tree)
sorted by their device offset. The Dirty Tree is used by msync,
to avoid scanning unnecessary (clean) pages.

Kmmap compared to mmap keeps pages in memory for a
longer period of time and does not evict them, unless there
is a need to do so. This allows Kreon to generate larger I/Os
during spill operations by merging more requests. When a
spill is completed, Kreon sets the priority of pages from the
previously spilled 𝐿0 to 255 (smallest priority) so they get
evicted as soon as possible.

To avoid unnecessary reads that occur when a new page
is written in Kreon, kmmap detects and filters these read-
before-write operations, whereas write and read-after-write
operations are forwarded to the actual device. To achieve
this, it uses an in-memory bitmap, which is initialized and
updated by Kreon via a set of ioctl calls. The bitmap uses
a bit per device block, so a 1 TB SSD requires 32 MB of
memory for the bitmap.

Kmmap provides a non-blocking msync call that allows
the system to continue operation while pages are written
asynchronously to the devices. For this purpose we keep a
timestamp for each page that indicates when it became dirty.
To write dirty pages, we iterate the Dirty Tree and write only
pages with timestamp older than the timestamp of msync.
We use fine grain locking in Dirty Tree and we allow to add
new dirty pages into it during msync. However, there can be
pages that are already dirty and changed after msync, which
should not be written. Kreon uses Copy-On-Write to ensure
that after a commit dirty pages will not change again as we
need to allocate new pages.

Finally, Kreon significantly reduces unpredictability with
respect to memory management during system operation
by limiting the maximum amount of memory it occupies
throughout its operation. It uses a configuration parameter
to calculate the size of 𝐿0 in memory and based on this it
preallocates all memory-mapped I/O structures.

2.4 Persistence

Kreon uses Copy-On-Write (CoW) [35] to maintain its state
consistent and recoverable after failures. Kreon’s state in-
cludes the data section of each segment (metadata and data
of the tree) and the allocator metadata. To persist a consis-
tent version of its state Kreon provides a commit operation.
This operation first writes the dirty (in-memory) data into
the device and then switches atomically from the old state
to the new state. More specifically, Kreon stores a pointer
to the latest persistent state in the superblock. At the end
of a commit operation, Kreon updates this pointer to the
newly created persistent state which becomes immutable. In
case of a failure, the new state that is not committed will be
discarded during startup, resulting in a rollback to the last
valid state.

In Kreon we use CoW for different purposes at 𝐿0 and
the rest of the levels. The index of all levels except 𝐿0 is
kept on the device and only brought to memory on demand.
Therefore, typically, only a small part of these indexes is
in memory. For these indexes, Kreon uses CoW to ensure
consistency of the index on the device during failures. These
levels are only written to the device during spills. Therefore,
the only time when commits occur (besides 𝐿0), is at the
end of each spill operation.

𝐿0 is different and can always be recovered by replaying a
subset of the key-value log. This subset is always the latest
portion of the log and is easy to identify via markers placed
in the log during the spill operation from 𝐿0 to 𝐿1. Therefore,
after a failure, 𝐿0 can be reconstructed. However, 𝐿0 can grow
significantly due to the large amount of memory available
in modern servers. Kreon uses CoW to checkpoint 𝐿0 to
the device and to reduce recovery time. Therefore, Kreon’s
commits of 𝐿0 are not critical for recovery. 𝐿0 checkpoints do
not have to be very frequent. Infrequent 𝐿0 commits do not
lead to data loss because the 𝐿0 index can be reconstructed
through the replay of the key-value log. The log is written

495

An Efficient Memory-Mapped Key-Value Store for Flash Storage SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Workload

A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

G 100% scans

Table 1: Workloads evaluated with YCSB. All work-
loads use a query popularity that follows a Zipf dis-
tribution except for D that follows a latest distribu-
tion.

to the device more frequently, when a log segment (2 MB)
becomes full.

Essentially, Kreon uses 𝐿0 commits at a coarse granularity
to improve recovery time, without however, a negative impact
on the recovery point. The tradeoff introduced is that commits
incur overhead during failure free operation. Overall, we
expect that Kreon 𝐿0 commits will be issued periodically at a
time scale of minutes, which has a low impact on performance.
Section 3.5 evaluates commit overhead in Kreon.

3 EXPERIMENTAL RESULTS

In this section we evaluate Kreon against RocksDB [16, 17].
Our goal is to examine the following aspects of Kreon:

(1) What is the efficiency in cycles/op achieved by Kreon
compared to LSM-based key-value stores? Does higher
efficiency come at the cost of worse absolute throughput
or latency?

(2) How much does the new index design and memory-
mapped I/O contribute to reducing overheads?

(3) How does Kreon improve I/O amplification? How much
does it increase I/O randomness?

(4) How do the growth factor across levels and 𝐿0 check-
point interval affect performance?

Next, we discuss our methodology and each aspect of Kreon
in detail.

3.1 Methodology

Our testbed consists of a single server which runs the key-
value store and the YCSB client. The server is equipped
with two Intel(R) Xeon(R) CPU E5-2630 v3 CPUs running
at 2.4 GHz, with 8 physical cores and 16 hyper-threads,
for a total of 32 hyper-threads and with 256 GB DDR4 at
2400 MHz. It runs CentOS 7.3 with Linux kernel 4.4.44.
During our evaluation we scale-down DRAM as required by
different experiments. The server has six Samsung 850 PRO
256 GB SSDs, organized in a RAID-0 using Linux md and
1 MB chunk size.

 0

 100

 200

 300

 400

Load A
Run C

Run G

k
c
y
c
le

s
/o

p

Kreon

RocksDB

(a) Small dataset

 0

 100

 200

 300

 400

 500

Load A
Run C

Run G

k
c
y
c
le

s
/o

p

Kreon

RocksDB

(b) Large dataset

Figure 4: Efficiency of Kreon and RocksDB in cy-
cles/op.

We use RocksDB1 v5.6.1, on top of XFS with disabled
compression and jemalloc [15], as recommended. We config-
ure RocksDB to use direct I/O because we evaluate experi-
mentally that in our testbed results in better performance.
Furthermore, we use RocksDB’s user-space LRU cache, with
16 and 192 GB depending on the experiment. We use a C++
version of YCSB [34] with the standard workloads proposed
by YCSB [9, 10]. Table 1 summarizes these workloads. We
add a new workload named G which is similar to E but
consists only of scans. In all cases we use 128 YCSB threads
for each client and 32 regions.

We emulate two datasets a small dataset that fits in mem-
ory and a large dataset that does not by using two different
memory configurations for our system. In the small dataset
we boot the server with 194 GB of memory, 192 GB for
key-value store and 2 GB for the OS. For the large dataset,
and to further stress I/O we boot the server with 18 GB of
memory, 16 GB for key-value store and 2 GB for the OS. The
dataset consists of 100M records and requires about 120 GB
of storage. YCSB by default generates 10 columns for each
key. We keep these 10 columns inside a single value. We use a
100M keys (recordcount and operationcount equals to 100M)
* 10 columns which results in 1 billion columns.

In the small dataset, both the key-value log and the indexes
fit in memory, so I/O is generated by commit operations. In
the large dataset, neither the key-value log nor the indexes
fit in memory and only 𝐿0 is guaranteed to reside in memory.
Therefore, the small dataset demonstrates more clearly over-
heads related to memory accesses whereas the large dataset
stresses the I/O path.

We calculate efficiency in cycles/op as follows:

𝑐𝑦𝑐𝑙𝑒𝑠/𝑜𝑝 =
𝐶𝑃𝑈 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

100
× 𝑐𝑦𝑐𝑙𝑒𝑠

𝑠
× 𝑐𝑜𝑟𝑒𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑝𝑠
𝑠

,

where 𝐶𝑃𝑈 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is the average of CPU utilization
among all processors, excluding idle and I/O wait time, as
given by mpstat. As 𝑐𝑦𝑐𝑙𝑒𝑠/𝑠 we use the per-core clock fre-
quency. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑝𝑠/𝑠 is the throughput reported by YCSB,
and 𝑐𝑜𝑟𝑒𝑠 is the number of system cores including hyper-
threads.

496

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA A. Papagiannis et al.

 0

 2

 4

 6

 8

 10

L
o

a
d

 A

R
u

n
 A

R
u

n
 B

R
u

n
 C

R
u

n
 F

R
u

n
 D

L
o

a
d

 E

R
u

n
 E

Im
p

ro
v
e

m
e

n
t Large Dataset

Small Dataset

(a) Efficiency

 0

 4

 8

 12

 16

L
o

a
d

 A

R
u

n
 A

R
u

n
 B

R
u

n
 C

R
u

n
 F

R
u

n
 D

L
o

a
d

 E

R
u

n
 E

Im
p

ro
v
e

m
e

n
t Large Dataset

Small Dataset

(b) Throughput

Figure 5: Efficiency and throughput improvement of
Kreon compared to RocksDB for all YCSB work-
loads.

3.2 CPU Efficiency and Performance

We evaluate the efficiency of Kreon in terms of cycles/op
required to complete each operation, excluding YCSB over-
head. To exclude the overhead of the YCSB client, we profile
the average cycles/op required by YCSB and we subtract
this overhead from the overall value for both RocksDB and
Kreon.

Figure 4 shows our overall results for Kreon and RockDB.
For the small dataset Kreon requires 8.3x, 1.56x, and 1.4x
fewer cycles/op for Load A, Run C, and Run G, respectively.
For the large dataset Kreon requires 5.82x, 1.2x, and 1.18x
fewer cycles/op for Load A, Run C, and Run G, respectively.
In addition, for the small dataset and Load A we compare
Kreon when using kmmap and when using vanilla mmap.
Although we do not show these results for space purposes,
using kmmap, Kreon achieves 1.47x fewer cycles/op compared
to vanilla mmap, indicating the importance of proper and
customized memory-mapped I/O for key value stores.

In terms of absolute numbers, we see that Kreon requires
21, 35, and 241 kcycles/op for each of Load A, Run C, and
Run G for the small dataset and 25, 64, and 354 kcycles/op
for each of Load A, Run C, and Run G for the large dataset.

We now show results from a complete run for all YCSB
workloads. We run the workloads in the recommended se-
quence [9]: Load the database using the configuration file
of workload A, run workloads A, B, C, F, and D in a row,
delete the whole database, reload the database with the
configuration file of workload E and finally run workload E.

For both the small and large dataset, Figure 5a shows the
improvement in efficiency compared to RocksDB, whereas
Figure 5b shows the improvement in throughput. Regarding
efficiency, Kreon improves RocksDB efficiency, on average, by
3.4x and 2.68x, for the small and large dataset, respectively.
Regarding throughput, the improvement in Kreon compared
to RocksDB is, on average, 4.72x and 2.85x for the small and
large datasets, respectively.

3.2.1 Latency analysis. First, we examine the average
latency per operation for the small dataset. For Load A,
RocksDB achieves 1162 𝜇s/op, Kreon with vanilla mmap
achieves 346 𝜇s/op, and Kreon with kmmap achieves 72 𝜇s/op.

1Options file: https://goo.gl/NJNLNr.

 0.01

 0.1

 1

 10

 100

 1000

50 70 90 99
99

.9

99
.9

9

L
a
te

n
c
y
 (

m
s
)

Load A

50 70 90 99
99

.9

99
.9

9

Run C

RocksDB

Kreon-mmap

Kreon-kmmap

Figure 6: Tail latency for Load A and Run C for
RocksDB, Kreon with vanilla mmap, and Kreon with
kmmap.

This shows that kmmap provides significant reduction in laten-
cies compared to vanilla mmap. For Run C, RocksDB achieves
174 𝜇s/op, Kreon with vanilla mmap achieves 119 𝜇s/op, and
Kreon with kmmap achieves 109 𝜇s/op. Generally, Kreon with
kmmap achieves 16.1x and 1.5x lower latency on average for
Load A and Run C compared to RocksDB.

Figure 6 shows the tail latency for Kreon using both kmmap
and vanilla mmap and RocksDB. For Load A, for 99.99%
of requests, Kreon with kmmap achieves 393x lower latency
compared to RocksDB. Furthermore, kmmap results in 99x
lower latency compared to vanilla mmap. In our design we re-
move blocking for inserts during msync and during spilling of
𝐿0. Unlike Kreon, RocksDB blocks inserts during compaction
operations for longer periods. For Run C, Kreon results in
almost the same latency with and without kmmap and about
2x better than RocksDB. This is because in a read-only work-
load most overheads comes from the data structure, as we
use a dataset that fits in memory and removes the need for
I/O. In the case of RocksDB this overhead includes also a
cache lookup while in Kreon it only accesses already mapped
memory. The use of mmap and kmmap results in almost
the same performance as this experiment does not stress
memory-mapped I/O path.

3.2.2 Very large dataset. To examine Kreon’s behavior
with a very large dataset we run Load A using 6 billion keys
with one column per key (key size of 30 bytes and value size
of 100 bytes). For this experiment we use 192 GB of DRAM
for both Kreon and RocksDB. Kreon reduces cycles/op by
8.75x, increases ops/s by 12.11x, reduces write volume by
4.25x, and read volume by 3.14x.

3.2.3 Absolute operation throughput. Next, we examine
if Kreon’s increased efficiency in cycles/op comes at the ex-
pense of reduced absolute performance. This is important for
understanding if Kreon trades device and host CPU efficiency
in the right manner. For Kreon and RocksDB, Figure 7 shows
the throughput (ops/s), achieved by YCSB. For the small
dataset, Kreon achieves 14.35x, 1.24x, and 1.25x more ops/s
for Load A, Run C, and Run G, respectively.

497

https://goo.gl/NJNLNr

An Efficient Memory-Mapped Key-Value Store for Flash Storage SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 0.5

 1

 1.5

Load A
Run C

Run G

M
o

p
s
/s

e
c

Kreon

RocksDB

(a) Small dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

Load A
Run C

Run G

M
o

p
s
/s

e
c

Kreon

RocksDB

(b) Large dataset

Figure 7: Throughput for Kreon and RocksDB in
ops/s.

For the large dataset, Kreon achieves 5.33x and 1.05x more
ops/s for Load A and Run C, respectively, than RocksDB.
However, Kreon is 2% worse for Run G. In this case, both
RocksDB and Kreon are limited by device throughput and
this is the reason that both systems are comparable. On the
other hand, Kreon results in much lower CPU utilization: on
average Kreon has a utilization of 13.8% while RocksDB has
a utilization of 39.5%. Therefore, Kreon is able to support
more clients given an adequate number of storage devices.

For the small dataset and Load A, we compare Kreon with
kmmap and with vanilla mmap. We see that kmmap improves
throughput by 4.34x compared to vanilla mmap.

3.3 Execution Time Breakdown

In this section we examine the main components that con-
tribute to overhead in Kreon and RocksDB. Our purpose
is to identify what are the main sources of improvement in
Kreon compared to RocksDB and what are the remaining
sources of overhead.

We examine two workloads a write-intensive (Load A) and
a read-intensive (Run C) using both the small and large
datasets. We profile Load A and Run C workloads and we
use stack traces from perf and Flamegraph [20] to identify
where cycles are spent. We divide overhead in the following
components: index operations (updates/traversals for put/get
operations), caching, I/O, and compaction/spill. I/O refers
to explicit I/O operations in RocksDB and memory-mapped
I/O in Kreon. Caching refers to the cycles needed for cache
lookups, fetching new data for misses and page evictions
when the cache becomes full. RocksDB uses a user-space
LRU cache whereas in Kreon cache resides in kernel-space as
part of kmmap.

Table 2 shows the breakdown for the write-intensive Load
A workload. The number of cycles used by the YCSB client
is roughly the same in all cases. In the small workload, index
manipulation incurs about 44% lower overhead in Kreon
(∼13K cycles/op in Kreon vs. 24K cycles/op in RocksDB).
Caching overhead for the write-intensive workload is lower for
the large dataset whereas for the small dataset Kreon spends
more 0.23 Kcycles/op. For I/O Kreon requires 61% fewer
cycles. For compaction/spill Kreon dramatically reduces the
cycles required per operation from 63.41K to 0.78K. In the
large workload, index manipulation requires 51% fewer cycles

kcycles/
operation

Load A (16GB) Load A (192GB)

RocksDB Kreon
Impro
vement

RocksDB Kreon
Impro
vement

index 24.15 13.46 44% 26.76 13.1 51%

cache 0.33 0.56 -69% 0.82 0.45 45%

I/O pfault 2.92 5.84
61%

1.66 2.61
80%

I/O syswrite 12.20 0 11.91 0

compaction/spill 63.41 0.78 98% 60.87 0.64 98%

Total 103.1 20.64 79% 102.02 16.8 83%

YCSB 26.67 25.34 - 22.79 21.37 -

Table 2: Breakdown of cycles per operation for work-
load Load A (write only). Numbers are in kcycles.

kcycles/
operation

Run C (16GB) Run C (192GB)

RocksDB Kreon
Impro
vement

RocksDB Kreon
Impro
vement

index 4.87 4.28 12.3% 25.59 10.29 59%
cache 8.61 0.41 95% 9.79 0.74 92%

I/O pfault 0.12 3.16
-6%

0.54 5.9
23%

I/O sysread 2.86 0 7.21 0
Total 16.46 7.85 52% 43.13 16.93 60%
YCSB 13.9 12.11 - 54.04 53.11 -

Table 3: Breakdown of cycles per operation for work-
load Run C (read only). Numbers are in kcycles.

in Kreon (from 26K to 13K) and for I/O 80% fewer cycles.
Similarly to the small dataset, Kreon significantly reduces
the number of cycles per operation for compaction/spill from
60.87K to 0.64K.

Table 3 shows the breakdown for the read-intensive work-
load (Run C benchmark). In the small dataset, index manip-
ulation incurs 12% fewer cycles (from 4.87K in RocksDB to
4.28K in Kreon). Caching overhead is reduced by 95% (from
8.61K cycles/op in RocksDB to 0.41K cycles/op in Kreon)
whereas I/O requires 6% more cycles in Kreon. In the large
dataset, index manipulation overhead is reduced by 59% in
Kreon, caching overhead by 92%, and I/O by 23%.

Overall, we see that Kreon’s design significantly reduces
overheads for index manipulation, spills, and I/O. We also see
that all proposed mechanisms for indexing, spills that involve
only metadata, and memory-mapped I/O-based caching, have
important contributions. Finally, we see that in Kreon the
largest number of cycles is consumed by index manipulation
(up to 13K cycles/op) both for both datasets in both work-
loads and secondarily by page faults (up to 5.9K cycles/op).

3.4 I/O Amplification and Randomness

In this section we evaluate how Kreon reduces amplification
at the expense of reduced I/O size and increased I/O ran-
domness. To reduce amplification, Kreon generates by design
smaller and more random I/Os compared to RocksDB and
traditional LSM trees. We measure the average request size
for Load A using the large dataset. For writes, Kreon has
an average request size of 94 KB compared to 333.2 KB
for RocksDB. However, even at 94 KB, most SSDs exhibit
high throughput with a large queue depth (Figure 1). For
reads, Kreon produces 4 KB I/Os, compared to 126 KB
for RocksDB. Because of compactions, RocksDB reads large

498

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA A. Papagiannis et al.

Load A Run C Run G

RocksDB-Read 669 138 296

Kreon-Read 112 127 1237

RocksDB-Write 869 0 8

Kreon-Write 221 0 139

Table 4: Total I/O volume (in GB) for Load A, Run
C, and Run G using the large dataset.

𝑅𝑡 𝑅𝑟 𝑅𝑤

RocksDB 0.001780 0.003878 0.000112

Kreon 0.009851 0.033648 0.000325

Table 5: I/O randomness using the large dataset and
Load A. The higher the value of 𝑅, the more random
the I/O pattern.

chunks of data in order to merge them. This results in a large
request size but it also results in high read amplification, 4.8x
more data compared to Kreon.

Table 4 shows the total amount of traffic to the device
using the large dataset. We see that for Load A Kreon reduces
both read traffic by 5.9x and write traffic by 3.9x, while the
total traffic reduction is 4.6x. Kreon reads 1.08x less data
for Run C. On the other hand, Kreon reads 4.1x more data
for Run G, due to data re-organization. This cost is related
only to scans and for leaves that are not re-organized. On
the other hand, in RocksDB data reorganization takes place
in every compaction.

To examine randomness, we implement a lightweight I/O
tracer as a stackable block device in the Linux kernel that
keeps the device offset and size for bios issued to the under-
lying device. The tracer stores this information to a ramdisk
to reduce overhead and avoid interfering with the key-value
store I/O pattern. Tracing reduces average throughput of
YCSB by about 10%. We analyze traces after each experi-
ment and calculate a metric for I/O randomness based on
the distance and size of successive bios, as follows:

𝑅 =

𝑛𝑏−1∑︀
𝑖=0

|𝑏𝑠[𝑖+ 1].𝑜𝑓𝑓 − (𝑏𝑠[𝑖].𝑜𝑓𝑓 + 𝑏𝑠[𝑖].𝑠𝑖𝑧𝑒)|+ 𝑏𝑠[𝑖].𝑠𝑖𝑧𝑒

𝑑𝑒𝑣𝑖𝑐𝑒 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑝𝑎𝑔𝑒𝑠 *
𝑛𝑏−1∑︀
𝑖=0

𝑏𝑠[𝑖].𝑠𝑖𝑧𝑒

,

where bs is the array that contains bio information and nb its
length. 𝑅 is the randomness metric and takes values between
[0,1]. The larger 𝑅 is, the more random the I/O pattern.
Finally, we compute three versions of 𝑅, one for all bios (𝑅𝑡),
one for reads (𝑅𝑟), and one for writes (𝑅𝑤).

Table 5 shows our results for Kreon and RocksDB. For cali-
bration purposes, we run fio with queue depth of 1 and block
size of 4 KB: a sequential pattern is 0 and a random pattern
is close to 0.33. Kreon produces overall about 5.53x more
random I/O patterns than RocksDB. Reads exhibit a larger
difference in randomness, about 10x, because Kreon moves

data between levels at smaller granularity than RocksDB.
For writes, Kreon exhibits a 3x more random pattern.

Overall, during inserts, Kreon reduces write traffic by 2.8x
and read traffic by 4.8x. In both cases, queue depth is about
30 on average. Figure 1 shows that, at this queue depth,
commodity SSDs achieve their maximum throughput with
at 32 KB requests, so Kreon’s 94 KB write requests result
in little or no loss of device efficiency, while there is a 2.8x
gain from reduced write traffic. For read traffic, Kreon’s 4K
requests result in a small percentage drop of SSD throughput
at a queue depth of 32, but at a 4.8x gain in traffic. There-
fore, Kreon properly trades randomness and request size for
amplification. The calculation is somewhat different for our
NVMe devices, but still favorable to Kreon.

Finally, Kreon achieves an average read throughput of
123 MB/s and an average write throughput of 743 MB/s at
an average queue depth of 21.2. On the other hand RocksDB
achieves 707 MB/s for reads and 889 MB/s for writes at
an average queue size of 26.2. In both cases queue depth
is large enough for devices to operate at high throughput,
although Kreon exhibits lower throughput for reads due to
the smaller request sizes it generates. This loss of device
efficiency is compensated by the reduced amplification (by
4.6x) and the reduced CPU overhead, eventually resulting in
higher performance and data serving density.

3.5 Growth Factor and Commit Interval

An important parameter for key value stores that use multi-
level indexes is the ratio of the size between two successive
levels (growth factor). The growth factor in Kreon represents
the amount of buffering that happens for inserts in one
level before keys are spilled to the next level. This affects
how effectively I/Os are amortized across several inserts and
reduces write amplification.

Figure 8 shows Load A with varying growth factor using
the large dataset. A growth factor of 0.1 means that 𝐿1 is
10x larger than 𝐿0 and therefore 𝐿0 can buffer about 10%
of the keys in 𝐿1. Figure 8b shows that a growth factor
between 0.05 and 0.1 is appropriate, meaning that each level
should buffer between 5-10% of the next level. A smaller
growth factor results in significant increase in traffic and
reduces device efficiency. Increasing the growth factor beyond
0.1 reduces traffic further, however, this also requires more
memory for 𝐿0. Figure 8a (right y-axis) shows that average
request size increases as buffering increases and combined
with the reduced traffic, results in increasing throughput
(ops/s), as shown in Figure 8a (left y-axis).

Figure 9 shows how the commit interval for 𝐿0 affects
ops/s, read volume, and write volume in Kreon. For Run
C the commit interval does not affect any of the metrics,
therefore, we examine only Load A with the large dataset.

Increasing the commit interval decreases the total amount
of data read and written to the device. This is due to Copy-
on-Write. For each commit we create a read-only version of
our tree, thus an insert has to allocate new nodes and copy
data from the immutable copy. Additionally, we see that

499

An Efficient Memory-Mapped Key-Value Store for Flash Storage SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.01250.025 0.05 0.1

 0

 5

 10

 15

 20

 25

M
o

p
s
/s

e
c

a
v
g

.
re

q
u

e
s
t

s
iz

e
 (

s
e

c
to

rs
)

growth factor

xput

avg. request size

(a) xput & avg. request size

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.0125 0.025 0.05 0.1

I/
O

 v
o

lu
m

e
 (

G
B

)

growth factor

read

write

(b) I/O volume

Figure 8: Results with varying growth factor from
1.25% to 10% (x-axis) using the large dataset.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

30 60 120 240 480 960

 0

 50

 100

 150

 200

 250

 300

 350

M
o
p
s
/s

e
c

I/
O

 V
o
lu

m
e
 (

G
B

)

commit interval (sec)

ops/sec

read volume

write volume

Figure 9: Results with varying the commit interval
(x-axis) for Load A and the large dataset.

commit intervals longer than 120s have a small impact for
read and write volume.

For throughput, a small commit interval results in larger
read and write volume which reduces performance. Interest-
ingly, a value larger than 240 seconds reduces throughput
significantly as well. This is due to the behavior of msync.
In kmmap, msync is optimized to generate many large and
asynchronous I/Os from all dirty pages, which means that it
is more efficient compared to the eviction path mmap where
we evict less amount of data. Overall, we see that a good
value for the commit interval is about 2 minutes, which we
use in all our other experiments.

4 RELATED WORK

bLSM [37] uses a B-tree index per level and bloom filters
to reduce read amplification. It also introduces gear schedul-
ing, a progress-based compaction scheduler that limits write
latency. Kreon shares the idea of a B-tree index per level
but keeps an index only for the metadata and it does not
fully rewrite levels during spills trading I/O randomness for
CPU efficiency. FD-tree [27] is an LSM tree for SSDs, which
uses fractional cascading [6] to reduce read amplification.
VT-tree [38] reduces I/O amplification by merging sorted
segments of non-overlapping levels of the tree. LSM-trie [41]
uses a hashing technique to replace sorting but does not sup-
port range queries. Contrary to these systems, Kreon replaces
sorting with indexing and introduces a spill mechanism to
reduce CPU overheads and I/O amplification.

Atlas [25] is a key-value store that aims to improve data-
serving density and data replica space efficiency. To achieve
these, Atlas employs an LSM–based approach and separates
keys from values to avoid moving values during compactions.
Similarly, WiscKey [29] proposes the separation of keys and
values to reduce write amplification. It stores values in a data
log and keeps an LSM index for the keys. Furthermore, it
implements a prefetching mechanism for speeding up range
queries because values are written randomly on the device.

PebblesDB [33] identifies as the main problem of write
amplification in the LSM-tree the repeated merges of files at
each level during compaction. To fix this, it keeps overlapping
sorted files at each level instead of non-overlapping. However,
this approach adds overhead in the read path since multiple
files need to be checked instead of a single. To improve this,
PebblesDB introduces guards which act as a coarse grain
index per level inspired by skip lists. Kreon shares the idea
of using an index per level with the differnce that in Kreon
case is full. Furthermore, it uses memory-mapped I/O, keeps
both keys and values on a separate log, and executes spill
operations only on pointers to keys and values.

TokuDB [40] implements at its core a B𝜖–Tree structure.
It keeps a global B-tree index in which it associates a small
buffer per B-tree node. Buffers are relatively small so it keeps
them unsorted and scans them during look-up queries. When
a buffer fills it is spilled to its N children, where N is the fan
out of the B-tree. Tucana [32] uses a B𝜖–Tree which buffers
keys only at the last level of the tree and relies on a ratio of
memory/data to operate efficiently. Kreon keeps a buffer per
level in order to achieve better batching and is able to server
larger datasets with smaller memory/data ratio.

DI-MMAP [14] proposes an alternative FIFO based replace-
ment policy that targets data-intensive HPC applications.
kmmap shares the same goals as DI-MMAP and introduces
priorities for pages in memory. This gives applications fine
grain control similar to user-space application specific caches.
Authors in [39] optimize the free page reclamation procedure
and make use of extended vectored I/O to reduce the over-
head of write operations. Finally, in [8] the authors propose
techniques that reduce the overhead of page faults and page-
table construction. These techniques are orthogonal to our
design and they can be used in Kreon as well.

5 CONCLUSIONS

In this paper, we design Kreon, a persistent key-value store
based on LSM trees that uses an index within each level
to eliminate the need for sorting large segments and uses a
custom memory-mapped I/O path to reduce the cost of I/O.
Compared to RocksDB, Kreon reduces CPU overhead by up
to 8.3x, I/O amplification by up to 4.6x at the expense of
increasing randomness of I/Os. Both index organization and
memory-mapped I/O contribute significantly to the reduction
of CPU overhead, while index manipulation and page faults
emerge as the main components of per operation cost in
Kreon.

500

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA A. Papagiannis et al.

ACKNOWLEDGMENTS

We thankfully acknowledge the support of the European Com-
mission under the Horizon 2020 Framework Programme for
Research and Innovation through the Vineyard (GA 687628)
and ExaNeSt (GA 671553) projects. Finally, we thank the
anonymous reviewers for their insightful comments.

REFERENCES
[1] Apache. 2018. HBase. https://hbase.apache.org/.
[2] Jens Axboe. 2017. Flexible I/O Tester.

https://github.com/axboe.
[3] Rudolf Bayer and Edward McCreight. 2002. Organization and

maintenance of large ordered indexes. Springer.
[4] Philip Bohannon, Peter Mcllroy, and Rajeev Rastogi. 2001. Main-

memory Index Structures with Fixed-size Partial Keys. In Pro-
ceedings of the 2001 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’01). ACM, New York, NY,
USA, 163–174. https://doi.org/10.1145/375663.375681

[5] Randal Burns and Wayne Hineman. 2001. A bit-parallel search
algorithm for allocating free space. In Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 2001.
Proceedings. Ninth International Symposium on. IEEE, 302–310.

[6] Bernard Chazelle and Leonidas J Guibas. 1986. Fractional cas-
cading: I. A data structuring technique. Algorithmica 1, 1 (1986),
133–162.

[7] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive
analytical processing in big data systems: A cross-industry study
of mapreduce workloads. Proceedings of the VLDB Endowment
5, 12 (2012), 1802–1813.

[8] Jungsik Choi, Jiwon Kim, and Hwansoo Han. 2017. Efficient Mem-
ory Mapped File I/O for In-Memory File Systems. In 9th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStor-
age 17). USENIX Association, Santa Clara, CA. https://www.
usenix.org/conference/hotstorage17/program/presentation/choi

[9] Brian F. Cooper. 2018. Core Workloads. https://github.com/
brianfrankcooper/YCSB/wiki/Core-Workloads.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. 2010. Benchmarking Cloud Serving
Systems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing (SoCC ’10). ACM, New York, NY, USA,
143–154. https://doi.org/10.1145/1807128.1807152

[11] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017.
Monkey: Optimal Navigable Key-Value Store. In Proceedings
of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). ACM, New York, NY, USA, 79–94.
https://doi.org/10.1145/3035918.3064054

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dy-
namo: amazon’s highly available key-value store. ACM SIGOPS
operating systems review 41, 6 (2007), 205–220.

[13] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba
Borthakur, Tony Savor, and Michael Strum. 2017. Optimiz-
ing Space Amplification in RocksDB. In CIDR 2017, 8th
Biennial Conference on Innovative Data Systems Research,
Chaminade, CA, USA, January 8-11, 2017, Online Pro-
ceedings. www.cidrdb.org. http://cidrdb.org/cidr2017/papers/
p82-dong-cidr17.pdf

[14] Brian Essen, Henry Hsieh, Sasha Ames, Roger Pearce, and Maya
Gokhale. 2015. DI-MMAP–a Scalable Memory-map Runtime for
Out-of-core Data-intensive Applications. Cluster Computing 18, 1
(March 2015), 15–28. https://doi.org/10.1007/s10586-013-0309-0

[15] Jason Evans. 2018. jemalloc. http://jemalloc.net/.
[16] Facebook. 2015. RocksDB Performance Benchmarks. https://

github.com/facebook/rocksdb/wiki/Performance-Benchmarks.
[17] Facebook. 2018. RocksDB. http://rocksdb.org/.
[18] Google. 2018. LevelDB. http://leveldb.org/.
[19] Goetz Graefe. 2004. Write-optimized B-trees. In Proceedings

of the Thirtieth International Conference on Very Large Data
Bases - Volume 30 (VLDB ’04). VLDB Endowment, 672–683.
http://dl.acm.org/citation.cfm?id=1316689.1316748

[20] Brendan Gregg. 2016. The Flame Graph. Queue 14, 2, Article
10 (March 2016), 20 pages. https://doi.org/10.1145/2927299.
2927301

[21] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and
Michael Stonebraker. 2008. OLTP Through the Looking Glass,
and What We Found There. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’08). ACM, New York, NY, USA, 981–992. https:
//doi.org/10.1145/1376616.1376713

[22] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd
Mullender, Martin Kersten, et al. 2012. MonetDB: Two decades of
research in column-oriented database architectures. A Quarterly
Bulletin of the IEEE Computer Society Technical Committee
on Database Engineering 35, 1 (2012), 40–45.

[23] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John
Esmet, Yizheng Jiao, Ankur Mittal, Prashant Pandey, Pha-
neendra Reddy, Leif Walsh, Michael Bender, Martin Farach-
Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. 2015. BetrFS: A Right-Optimized Write-Optimized
File System. In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15). USENIX Association, Santa
Clara, CA, 301–315. https://www.usenix.org/conference/fast15/
technical-sessions/presentation/jannen

[24] B Kuszmaul. 2014. A comparison of fractal trees to log-structured
merge (LSM) trees. White Paper (2014).

[25] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin, Guangyu Sun,
Zhenyu Hou, Can Cui, and Jason Cong. 2015. Atlas: Baidu’s key-
value storage system for cloud data.. In MSST. IEEE Computer
Society, 1–14. http://dblp.uni-trier.de/db/conf/mss/msst2015.
html#LaiJYLSHCC15

[26] Leslie Lamport. 1977. Concurrent reading and writing. Commun.
ACM 20, 11 (1977), 806–811.

[27] Y. Li, B. He, Q. Luo, and K. Yi. 2009. Tree Indexing on Flash
Disks. In 2009 IEEE 25th International Conference on Data
Engineering. 1303–1306. https://doi.org/10.1109/ICDE.2009.
226

[28] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Vo-
los, Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje
Jevdjic, Sachin Idgunji, Emre Ozer, and Babak Falsafi. 2012.
Scale-out Processors. In Proceedings of the 39th Annual Inter-
national Symposium on Computer Architecture (ISCA ’12).
IEEE Computer Society, Washington, DC, USA, 500–511. http:
//dl.acm.org/citation.cfm?id=2337159.2337217

[29] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Wis-
cKey: Separating Keys from Values in SSD-conscious Stor-
age. In 14th USENIX Conference on File and Storage
Technologies (FAST 16). USENIX Association, Santa Clara,
CA, 133–148. https://www.usenix.org/conference/fast16/
technical-sessions/presentation/lu

[30] Michael A. Olson, Keith Bostic, and Margo Seltzer. 1999. Berke-
ley DB. In Proceedings of the Annual Conference on USENIX
Annual Technical Conference (ATEC ’99). USENIX Association,
Berkeley, CA, USA, 43–43. http://dl.acm.org/citation.cfm?id=
1268708.1268751

[31] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. 1996. The log-structured merge-tree (LSM-tree). Acta
Informatica 33, 4 (1996), 351–385.

[32] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez,
and Angelos Bilas. 2016. Tucana: Design and Implementation of a
Fast and Efficient Scale-up Key-value Store. In 2016 USENIX An-
nual Technical Conference (USENIX ATC 16). USENIX Associa-
tion, Denver, CO, 537–550. https://www.usenix.org/conference/
atc16/technical-sessions/presentation/papagiannis

[33] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai
Abraham. 2017. PebblesDB: Building Key-Value Stores Using
Fragmented Log-Structured Merge Trees. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP ’17).
ACM, New York, NY, USA, 497–514. https://doi.org/10.1145/
3132747.3132765

[34] Jinglei Ren. 2016. YCSB-C. https://github.com/basicthinker/
YCSB-C.

[35] Ohad Rodeh. 2008. B-trees, Shadowing, and Clones. Trans.
Storage 3, 4, Article 2 (Feb. 2008), 27 pages. https://doi.org/10.
1145/1326542.1326544

[36] Allen Samuels. 2018. The Consequences of Infinite Storage Band-
width. https://goo.gl/Xfo7Lu.

[37] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: A Gen-
eral Purpose Log Structured Merge Tree. In Proceedings of the
2012 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’12). ACM, New York, NY, USA, 217–228.

501

https://hbase.apache.org/
https://doi.org/10.1145/375663.375681
https://www.usenix.org/conference/hotstorage17/program/presentation/choi
https://www.usenix.org/conference/hotstorage17/program/presentation/choi
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3035918.3064054
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
https://doi.org/10.1007/s10586-013-0309-0
http://jemalloc.net/
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
http://rocksdb.org/
http://leveldb.org/
http://dl.acm.org/citation.cfm?id=1316689.1316748
https://doi.org/10.1145/2927299.2927301
https://doi.org/10.1145/2927299.2927301
https://doi.org/10.1145/1376616.1376713
https://doi.org/10.1145/1376616.1376713
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
http://dblp.uni-trier.de/db/conf/mss/msst2015.html#LaiJYLSHCC15
http://dblp.uni-trier.de/db/conf/mss/msst2015.html#LaiJYLSHCC15
https://doi.org/10.1109/ICDE.2009.226
https://doi.org/10.1109/ICDE.2009.226
http://dl.acm.org/citation.cfm?id=2337159.2337217
http://dl.acm.org/citation.cfm?id=2337159.2337217
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
http://dl.acm.org/citation.cfm?id=1268708.1268751
http://dl.acm.org/citation.cfm?id=1268708.1268751
https://www.usenix.org/conference/atc16/technical-sessions/presentation/papagiannis
https://www.usenix.org/conference/atc16/technical-sessions/presentation/papagiannis
https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/3132747.3132765
https://github.com/basicthinker/YCSB-C
https://github.com/basicthinker/YCSB-C
https://doi.org/10.1145/1326542.1326544
https://doi.org/10.1145/1326542.1326544
https://goo.gl/Xfo7Lu

An Efficient Memory-Mapped Key-Value Store for Flash Storage SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

https://doi.org/10.1145/2213836.2213862
[38] Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Mal-

pani, Binesh Andrews, Justin Seyster, and Erez Zadok. 2013.
Building Workload-Independent Storage with VT-Trees. In
Presented as part of the 11th USENIX Conference on
File and Storage Technologies (FAST 13). USENIX, San
Jose, CA, 17–30. https://www.usenix.org/conference/fast13/
technical-sessions/presentation/shetty

[39] Nae Young Song, Yongseok Son, Hyuck Han, and Heon Young
Yeom. 2016. Efficient Memory-Mapped I/O on Fast Storage
Device. Trans. Storage 12, 4, Article 19 (May 2016), 27 pages.
https://doi.org/10.1145/2846100

[40] INC TOKUTEK. 2013. TokuDB: MySQL Performance, MariaDB
Performance.

[41] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-
trie: An LSM-tree-based Ultra-Large Key-Value Store for Small
Data Items. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15). USENIX Association, Santa Clara, CA, 71–
82. https://www.usenix.org/conference/atc15/technical-session/
presentation/wu

502

https://doi.org/10.1145/2213836.2213862
https://www.usenix.org/conference/fast13/technical-sessions/presentation/shetty
https://www.usenix.org/conference/fast13/technical-sessions/presentation/shetty
https://doi.org/10.1145/2846100
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
https://www.usenix.org/conference/atc15/technical-session/presentation/wu

	Abstract
	1 Introduction
	2 Design
	2.1 Overview
	2.2 Index Organization
	2.3 Memory-Mapped I/O
	2.4 Persistence

	3 Experimental Results
	3.1 Methodology
	3.2 CPU Efficiency and Performance
	3.3 Execution Time Breakdown
	3.4 I/O Amplification and Randomness
	3.5 Growth Factor and Commit Interval

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

