
D2.1 Plan for
converged
hardware
platform

dimensioning

Ref. Ares(2019)3554363 - 03/06/2019Ref. Ares(2020)7651076 - 16/12/2020

The Deliverable 2.1 is based on the contributions from the following persons.

Contributors

Name Organization

Nam Nguyen ATOS

Jean-Thomas Acquaviva DDN

Per Simonsen MEMOSCALE

 2 of 21

evolve-h2020.euevolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Peer reviews

Name Organization

Sotirios Xydis Space Hellas

Angelos Bilas FORTH

 3 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Revision history

version date reviewer

V0 05/20/ 2019 Huy Nam Nguyen

V1 05/22/ 2019 Jean-Thomas Acquaviva

V2 26/05/ 2019 Angelos Bilas

V3 05/31/ 2019 Sotirios Xydis

V4 05/31/ 2019 Jean-Thomas Acquaviva

 4 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Executive Summary

This document represents the deliverable D2.1 Plan for converged hardware platform
dimensioning. It presents the plan for sizing the HPC architecture with its main features and the
plan for how it will evolve with over the duration of the project based on technology availability,
the work in the project, towards the final configuration that will be made available at the end of the
project.

 5 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Index of Contents

 1 HPC Platform..7
 1.1 Hardware...7
 1.2 Software..8

 1.2.1 Software layer 1: Configuration...8
 1.2.2 Software layer 2: Architecture and Tools...8
 1.2.3 Software layer 3: Deep Administration..8

 2 Design/Evolution of the Evolve Platform...9
 2.1 Design/Evolution Strategy...9

 2.1.1 Evolution of hardware..9
 2.1.2 Evolution of software...9

 2.2 Evolution Plan..9
 2.2.1 Computation evolution plan...9
 2.2.2 Storage Evolution plan...10

 3 Tiered Architecture..11
 3.1 Overview of a Tiered architecture..11
 3.2 Key Benefits of Tiering...11

 4 Interacting with IME...14
 4.1 Evolve I/O Subsystem..14
 4.2 Selecting the right file system...14
 4.3 Mountpoint and data visibility...16
 4.4 Controlling data movements...16

 5 Interacting with Containers...17
6.1 Working around root access..17
6.2 Fetching Docker image..17

 6 Optimizing fault tolerance, throughput and storage capacity..19
 6.1 Erasure coding and fast general compression...19
7.2 Satellite Image Compression...19
 6.2 Encryption...20

8 Conclusions...20

 6 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

 1 HPC Platform

The main objective of HPC is either to accelerate applications or to run problems that require
shorter execution times or more compute, memory, and I/O resources than what is available on
smaller systems. For this purpose, it is necessary for applications to include components that are
parallel across multiple compute nodes. Therefore, it is important to understand how applications
run across physically different servers and how to design and administer a system of discrete and
potentially heterogeneous physical components.

Figure 1: Typical HPC Architecture.

 1.1 Hardware
Figure 1 illustrates the main aspects of high performance systems and which are considered in the
design of the EVOLVE platform:
 Computing: The compute nodes characterized by a local interconnection of CPUs, eventually

enhanced with acceleration technologies (GPU or FPGA) and addressing consistently the same
address space. These computing devices are characterized by their components, e.g. number of
cores with respect to CPU and GPU or the number of logic elements for FPGAs, together with
their embedded memory. The organization and capacity of memory, e.g. shared memory, global
memory, etc., and also plays an important role in the performance of compute nodes.

 Communication: The network to connect the nodes so they can communicate to share data, the
state of the solution to the problem, and possibly the instructions that need to be executed. High
performance systems, typically include a network dedicated to the computing aspect, along with
other networks dedicated to management services, control operations, data storage, and I/O.

 7 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Factors that come into play in the overall performance include the interconnection topology and
communication protocol.

 Storage: While the local storage in each node can be as simple as an SDD device to hold the
OS, the application and the data, clusters of storage devices should be made available to the
whole system for the purpose of checkpoint, archiving, etc. In order to separate the performance
and capacity aspects, the insertion of flash storage, e.g. DDN/IME burst buffer, that streamline
the application I/O and perform data cache, represents a plus.

 1.2 Software
On the software side, most distributions provide the basic tools for making a cluster work and for
administering the tools to which it is necessary to add the tools and libraries for the parallel
applications (e.g., compilers, programming models libraries and any specific additional libraries
needed by the application).
The software is organized into layers: The first layer is the rudimentary systems software you need
and nothing extra. The second layer adds administrative tools to make it easier to operate the
cluster, as well as tools to reduce problems when running parallel applications. The third layer adds
more sophisticated cluster tools and adds the concept of monitoring, so you can understand what’s
happening. Next, we discuss these layers in more detail.

 1.2.1 Software layer 1: Configuration

The first layer of software contains the minimum software to run parallel applications, i.e. the OS
together with a set of MPI libraries such as Open MPI or MPICH. These are the libraries necessary
for creating parallel applications and running them on the cluster. In order to run MPI, SSH is
another piece of software needed in this basic layer.

 1.2.2 Software layer 2: Architecture and Tools

The second layer of software provides tools to assist the administration of cluster problems of the
kind: Running commands on each node , Configuring identical nodes , Alignment of time on each
node, Job scheduling and resource management.
These issues arise particularly when trying to scale the system size.

 1.2.3 Software layer 3: Deep Administration

The third level of tools goes deeper into HPC administration and begins to gather more information
about the cluster, so you can find problems before they happen. Examples of these tools are: Cluster
management tools (e.g. resources reservation, task tracking, ec.), Monitoring tools (e.g. Bull
Performance toolkit including HPC toolkit, MPIAnalyzer, etc.), Environment Modules (an
environment consists of a set of compatible products eg. Fortran compiler/C compiler, libraries,
debugger, etc.) and Multiple networks.

 8 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

 2 Design/Evolution of the Evolve Platform

 2.1 Design/Evolution Strategy
In order to support development in other WPs/Tasks of EVOLVE at the same time, we adopt a
pipeline approach to the design and assembly of the hardware platform: A preliminary V0 version
of the platform was made available to the partners, already from M0; afterwards, a V1 version of
the platform will be built for M6 and this version will evolve continuously with upgrades of the
different computing/memory/storage components as described in the previous paragraph. Table 1
illustrates this overall schedule.

 2.1.1 Evolution of hardware

It is important to note that the evolution strategy of the platform hardware is dictated by the
following considerations:
In order to keep this evolution as smooth as possible and hence to minimize disruption to partner
developments it has been decided to keep constant the interconnection network which represents the
backbone of the HPC system, i.e. Infiniband FDR Interconnect and Interconnection Topology.
Improvement of storage will be done mainly on the basis of capacity increase, while the storage
architecture (scratch storage, SSD storage, DDN/IME burst buffer) and APIs will be kept
unchanged, as much as possible.
Continuous increase of performance will be performed via the upgrade of components, such as
CPUs (#cores, frequency) together with the organization and amount of their associated memory
(levels of cache, memory bus, etc.)
Performance will be improved also via the use of new acceleration technologies (GPU and FPGA).
This introduction will be done in discrete mode (communication via PCIe) and hence will not
change drastically the programming model throughout the development cycle.

 2.1.2 Evolution of software

From its first version, the Evolve platform is able to support a large range of programming models
varying from OpenMP, MPI, OpenCL, CUDA, etc. and hence the evolution of the basic software
layer will be mainly oriented towards upgrading performance and adding specific features in
conjunction with new components.
Finally, it is important to mention that the dynamic evolution of the platform will be done according
to the profiling of pilots in order to establish a priority of criteria in terms of acceleration
technologies, local memory capacity, etc. To support this purpose, a set of monitoring tools (e.g.
PMC, MPI monitoring) will be provided to the partners to accomplish their profiling task.

 2.2 Evolution Plan
The following Table 1 and Table 2 describe the main milestones in the evolution of the Evolve
platform hardware. The data are indicative and may be subjected to changes related to specific
requirements or constraints.

 2.2.1 Computation evolution plan

Versio
n

Time Main Features Improvements

V0 M0 Intel/SNB, Nividia/P10 Preliminary version

 9 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

V1 M6

CPU Intel/SNB [O(TFlops)]
GPU Nvidia/P40
Memory Hierarchy:
[O(TB)]

Upgrade of GPU,
Integration of DDN/IME

V2 M18
CPU Intel/SKL,
FPGA Intel/Stratix10

CPU upgrade to Intel/SKL
Integration of FPGA

VF M30
CPU Intel/SKL,
GPU Nvidia/V100,
FPGA Intel/Stratix10

Increase of CPU performance,
Memory capacity and update of
acceleration technologies

Table 1: Plan for the Evolution of the Computing Hardware.

 2.2.2 Storage Evolution plan

Version Time Main Features Improvements

V0 M0 Lustre parallel server Parallel file system performance

V1 M6
IME 120: 4 servers
with 12 SSD Software
IME1.2

Storage tiering with Flash layer

V2 M18
IME 240 4 servers with
24 NVMe Software
IME1.4

Faster tiering increased capacity.
Support for container technology

VF M24

IME 240 4 servers with
24 NVMe Software
IME 1.4 + Evolve
features

Advanced monitoring
capabilities. Native support of
the Evolve software stack.
Compression and encryption
technologies.

Table 2: Plan for the Evolution of Storage.

Regarding storage the evolution of the platform is twofold. First, from a raw hardware perspective,
with the shift from the SSD to more advanced NMVe technology. NMVe allows higher bandwidth
(typically a factor of 2) and more importantly a latency improved by a factor of 10x.
The shift from IME 120 to IME 240 will thus improve the per device bandwidth, reduce the latency
which can be of high interest for workload dominated by sparse read access. The applications used
within the scope of Evolve may take large benefit from this improve read capabilities. Additionally,
the IME 240 host more devices, each of them being of larger capacity (1TB) than the 256 GB
provisioned in the IME 120.
The second improvement is on the internal software stack of the storage. As IME is mostly a
software defined storage, the improvements from one software version to the other will impact
significantly the storage system. From the initial 1.1 to the 1.4, fault tolerance capabilities will be
greatly improved, prefetch and data movements will be improved considerably as well. An
important effort will be made on the monitoring capabilities of the system and its integration with
the job scheduler and more generally the resource allocation middleware.

 10 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

 3 Tiered Architecture

 3.1 Overview of a Tiered architecture

Figure 2: Tiered storage architecture of EVOLVE.

At the opposite of a per component approach in Evolve the storage is envisioned as a tiered
architecture (Figure 2). Depending on the workload characteristic a distinct hardware component
will be involved in order to provide the performance target.

 3.2 Key Benefits of Tiering
Tiering implies an additional complexity at the system architecture, from an infrastructure stand
point but also for user since data movement and location become more complex. The benefit is
illustrated in Error: Reference source not found. These measurements have been realized on the
exact same platform, a system using 24 NMVe with 2 EDR link. The write access pattern is
characterized by three metrics:

1. I/O size, are the write access made by small or large chunck. Here Large stands for 1MB,
medium 64 KB and small 32 KB

2. I/O predictability, is the pattern random or sequential

3. I/O sharing, is the I/O request targetting a file also accessed by other processes. In this case we
only consider share everything (single shared file) or share nothing (each processes write in its
own file)

 11 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

The measurements on the Lustre file system shows that despite the usage of fast NVMe the system
is sensitive the both the sharing pattern and to the predictability of the IO. Random small I/O
present an efficiency of around 1%. Therefore, while Lustre is the system used for extreme scale up
to hundred of Petabyte, it appears that the capacity component of the storage system is not suitable
to handle all kind of workloads.

Figure 3: Performance space for typical I/O subsystems.

Running the exact same experiment on an IME system display a different picture. The surface of
efficiency of IME is much better, showing the resilient of this tier in respect of complicated I/O
patterns.

 12 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

However, IME is flash-based, hence not very cost-effective for large capacities. Thus, EVOLVE
implements a tiered architecture, as sketched in Figure 4, which offers a fast and resilient layer of
storage based on flash technology, where the capacity tier is ‘shielded’ from complicated I/O.

Figure 4: EVOLVE tiered storage architecture.

 13 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Large FPP Sequential
Large FPP Random

Large Shared Sequential

Large Shared Random

Small FPP Sequential

Small FPP Random
Small Shared Sequential

Small Shared Random

Medium FPP Sequential

Medium FPP Random

Medium Shared Sequential

Medium Shared Random

-5000

5000

15000

25000

 4 Interacting with IME
The information provided in this section are an introduction to IME usage. More detailed process
and explanations can be found in the reference documents:

a) IME developer guide
b) IME installation and administration guideline

Both reference document are available on the Evolve-H2020 website, in the foloder dedicated to
WP2: https://consortiumarea.evolve-h2020.eu

 4.1 Evolve I/O Subsystem
The I/O subsystem that is designed for EVOLVE is shown in Figure 5.

Figure 5: EVOLVE I/O subsystem.

 4.2 Selecting the right file system
As discussed in Section Evolution Plan, depending on the I/O pattern the performance response of a
file system varies. A general guideline being that Lustre is highly sensitive to both random accesses
(either read or write) and write on shared files and hence, for these kind of patterns IME should be
evaluated as an alternative to Lustre.

 14 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Figure 6: Filesystem configuration for EVOLVE IME.

One important conceptual point is that IME is an I/O accelerator not a file system per se. Metadata
operations, such as file creation, are still handled by Lustre, even if they go through the IME layer
(Figure 6). For metadata traffic IME is a proxy towards Lustre.
Access to the storage layer of IME is simple. IME appears as an additional mountpoint in the
compute node. The following example (Figure 7) is taken from a larger IME configuration but
otherwise similar to what is used in the Evolve testbed. The IME mount point appears listed as
imefs and can be used as any other mount point.

Figure 7: IME-based mount point in a typical server.

 15 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Figure 8: Configuration options for IME storage acceleration.

 4.3 Mountpoint and data visibility
Imefs allows accelerated access to a portion of the parallel system name space. The fraction of the
accelerated name space depends on the way the IME servers have been configured. In Figure 8 all
data accesses made to the sub-tree /scratch/ime are intercepted by the IME client and accelerated
due to the storage of the Flash native IME servers.

 4.4 Controlling data movements
Data movement can be monitored and controlled with command line tools. The system supports an
array of commands, the most generic one and easier to use being ime-ctl. Man pages are available
for a full description of the command, however a simple description is:

• Express data movement, from backend file system to IME, from IME to backend file
system. Where stage-in means coping data from backend file system to IME. Stage-out or
Synchronization mean copying data out of IME to backend file system, and purge means
removing data from IME without copy to the backend file system.

• Monitor file status, list the file cached in the IME and their status: copy of the back-end file
system or newer version of an existing file of the file system, number of Byte of delta
between the two versions and so on.

• Configure IME, several performance knobs are exposed to the end-user in order to help the
optimization of a specific workload.

These commands can be used on-line, scripts or integrated within an epilogue / prologue of the job
scheduler.

 16 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

 5 Interacting with Containers
The Evolve platform allows end user not only to run traditional HPC codes as detailed in the section
2 but also to use containers.

6.1 Working around root access
Container is a technology coming from the Cloud where root access is not as strictly controlled than
in HPC. Therefore most if not all Docker command implies a root access. In order to work around
this constraints and still allow end-user to run Docker command without compromising root access,
the platform support a Docker groups. All Evolve partners are added to the docker group. Only the
command prefix by # need to be run as root.
= Create docker groups
sudo groupadd docker
= Adding user to the Docker group
#sudo gpasswd -a my_user docker
Adding user my_user to group docker:
= Refresh groups belonging to take modification into account
% groups
my_user adm cdrom sudo dip plugdev lpadmin sambashare
%newgrp docker
%groups
docker adm cdrom sudo dip plugdev lpadmin sambashare my_user

6.2 Fetching Docker image
In the container world the code is not built locally on the platform, it is considered as portable hence
built on a remote platform and fetch for the execution phase. In such a case, a remote access from
the node is mandatory since the container will be refreshed just prior to its execution. In order to
implement this workflow application partners need to set-up a docker repository. The repository is
accessed dynamically to fetch the latest version of the image. With respect to classic cluster
configuration, it means that the executing node need to have access to the internet. The example
bellow is taken from the CybeleTech application:

% docker login -u teddy.debroutelle registry.cybeletech.fr
Password:
WARNING! Your password will be stored unencrypted in /home/user/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
Login Succeeded
% docker pull registry.cybeletech.fr/cybeletech/image/image:dev
dev: Pulling from cybeletech/image/image
Digest: sha256:51d8ce7862eaf74f9aab4a3209de45a401b5553046a986521254117f8dbc85fb
Status: Image is up to date for registry.cybeletech.fr/cybeletech/image/image:dev

Once the code has been executed, it is considered as good practice to remove the configuration file
created during the login stage.
% docker logout registry.cybeletech.fr
Removing login credentials for registry.cybeletech.fr

 17 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

% rm /home/user/.docker/config.json

 18 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

 6 Optimizing fault tolerance, throughput and
storage capacity

 6.1 Erasure coding and fast general compression
The storage software architecture will be upgraded with highly optimized libraries for compression
and erasure coding functionality(for fault tolerance). MemoScale’s fast compression for floating
point and general data will be used to explore the potential of further increase the speed of the data
transfer between compute nodes and the storage servers by compressing the data before
transmissions.
The MemoScale erasure coding library will provide up to 2x improvements in erasure coding
encoding speed per CPU core compared to the fastest alternative erasure coding library (Intel ISA-
L) reducing the total CPU footprint of data writes as well as increasing the throughput.

Figure 9: Performance efficiency of MemoScale erasure coding.

7.2Satellite Image Compression
Three of the pilot users (Thales, Space Hellas,
and Cybeletech) will process and store satellite
images on the platform. The amount of storage
capacity needed for satellite images can
potentially grow to a significant size during the
course of the project. A single satellite image is
up to almost 1 GB in size, and the pilot users
plan to analyze long time series of images over
increasingly larger geographical areas eventually
covering the whole of Europe. MemoScale will
investigate if their lossless image compression
technology can be used to compress satellite
images further to increase the amount of satellite
images which can be stored on the platform with
between 37% - 275%. Figure 10: MemoScale adapter for

image compression.

 19 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Satellite images are stored inside an image container called GeoTIFF and are read with a library
called GDAL (Geospatial Data Abstraction Library). MemoScale will replace images stored inside
of the GeoTIFF file format with highly compressed images. To enable the users of the platform to
use the compressed format, MemoScale will provide a driver/adapter for the GDAL library so that
users can access the compressed images in a transparent way without interference to their work
flow (Figure 10). Depending on the compression/decompression speed needed by users in the
project, MemoScale will consider accelerating the compression algorithm with FPGA or GPU.

 6.2 Encryption
MemoScale, DDN and Atos/Bull are researching feasible ways of implementing encryption on the
platform given the existing storage infrastructure. Encryption needs to be implemented in a way
which does not have a large negative impact on performance of the HPC system. Currently, it looks
like implementing encryption on the capacity storage tier is the most promising approach.

8 Conclusions
The evolution plan described in this document takes into account the state-of-the-art of HPC
components and their availability and their contribution to the optimal support of the pilots
proposed in the project. This plan is mostly conservative and hence takes only limited risks in order
to avoid disruptions in the development of partners. It is worth to mention that we have paid a
specific attention to the storage aspect in order to increase the overall performance. Obviously this
plan must be in line with the profiling and implementation tasks of those use cases.

 20 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

Consortium

 21 of 21

evolve-h2020.eu

Contact us:
info@evolve-h2020.eu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

