

D1.1 Public Project Presentation

Work package WP1

Dissemination level public

Dec. 24th 2018

Leader DDN

Author Contributor

This project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 825061

DDN, BULL, IBM, FORTH, ONAPP, ICCS, MEMO, WLT, LOBA, TAS, SPH, CYB, NEURO, MEMEX, TIEMME, VIF, AVL, BMW, KOOLA

Contributors

The Deliverable 1.1 being based on materials presented by all partners during the project kick-off meeting the list of contributors encompasses authors from all partners. The following persons have therefore contributed to the realization of this document.

DDN	Jean-thomas Acquaviva	
ATOS	Nam Nguyen	
IBM	Christian Pinto	Michael Johnston
FORTH	Angelos Bilas	Christos Kozanitis
ONAPP	Michail Flouris	Stelios Louloudakis
ICCS	Dimitrios Soudris	Sotirios Xydis.
MEMOSCALE	Per Simonsen	Rune Erlend Jensen
WEBLYZARD	Max Goebel	Arno Scharl
LOBA	Alexandre Almeida	Catarina Pereira
SPH	Socrates Costicoglou	
CYBELETECH	Marion Carrier	Teddy debroutelle
NEUROCOM	Frédéric Hernu	Vassilis Spitadakis
MEMEX	Ciaraia Ambrasina	
TIEMME	Giorgio Ambrosino	Mauro Pallari
V2C2	Alexander Stocker	Gernot Lechner
AVL	Eric Armengaud	Bernhard Peischl
BMW	Ulrich Fastenrath	
THALES ALENIA SPACE	Marc Spigai	Michelle Aubrun
KOOLA	Sergio Ermacora	

Peer reviews

Name	Organization
Jean-Thomas Acquaviva	DDN

Revision history

version	date	reviewer	modifications
0.1	21/12/2018		Initial template
0.2	24/12/2018		Contribution to content

Executive Summary

EVOLVE is a 3 years projects with 19 parters. The project is centered on the concept of data at scale and is an ambitious community effort to handle the looming data deluge.

Two communities are brought together, the platform providers, to be understood at the hardware and software level and the data providers.

Platform core strategy is to tackle data using heterogeneity with specialized components both from the processing sides and storage aspects. Evolve considers that data are intrinsically structured and depending on this structure the right processing unit is key to deliver speed-up. Similarly for storage, data locality, both spatial and temporal, with the right usage of the storage depth can improve performance by several orders of magnitude.

Ensuring the management of this heterogeneity requires a middle-ware upgrade and the project platform includes major efforts on the middelware layer. This aspect is key to ensure a correct convergence between the HPC and cloud applications, where one the differentiator is the dependence on specific deployment stacks.

On the data producers side, EVOLVE is bringing together partners owning technologies in markets where data capability is already the source of disruption, or which are the turn point of being disrupted. EVOLVE partners bring use cases mostly from mobility (autonomous vehicle, ground mass transportation, maritime transport), agriculture and urban planing. As these markets are socially critical from European citizens, EVOLVE is not a pure technology project but frames itself in the more global perspective of data ownership in an open society.

Index of Contents

evje

1. Project Value Proposition	5
1.1.Project structure to bring value	5
1.1.1.Heterogeneity is key for a successful convergence	6
1.1.2.Data providers from heterogeneous workload	6
1.1.3.Lean project management	6
1.2.Value proposition: 3 pillars	7
Bridge the cultural gap and build a culture of trust	8
1.3.EVOLVE in the European perspective	8
2.Timeline and short term schedule	9
2.1.Hardware platform aggressive schedule	9
2.2.Short term deliverable and milestones: overview	9
Milestones	10
Next general assembly	10
3.Dissemination and communication	10
Public communication on the project at SIG I/O UK:	11
Poster session at the Per3S conference:	11
Electronic presence	11
Dissemination and communication materials	11
1. WP2: Platform detailed view	14
2. WP3:Middleware	18
3. Evolve Workflow	22
3.3.Deliverable for Work-flow	24
4. Pilots and use cases	25
5. Continuous testbed integration	30

www.evolve-h2020.eu

1. Project Value Proposition

1.1. Project structure to bring value

The project is built on the convergence of two main components,

- 1. platform providers
- 2. data providers

e V) e

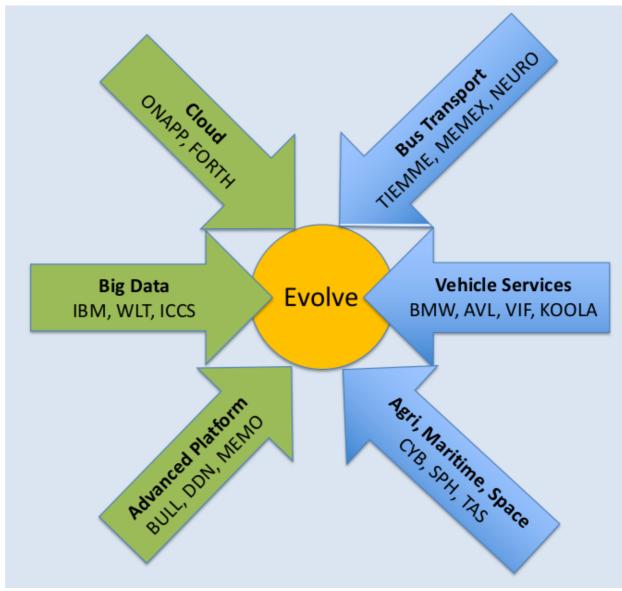


Figure 1: Evolve consortium organization

This project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 825081

www.evolve-h2020.eu

1.1.1. Heterogeneity is key for a successful convergence

Where platforms providers are themselves issued either form HPC or the Cloud market. While these two market are historically disjoint they are now on the verge of convergence. Evolve is therefore an opportunity to realize the many times announced but never realized convergence between Big Data and HPC.

By working jointly on a unique platform partners will mechanically ensure convergence.

The too often overlooked issues in convergence is that the two fields while exhibiting overlap are not identical. The risk of converged platform is to be efficient on the minimal common overlap between the two communities.

To ensure a better market penetration and ensure not only for the converged segments, but to support the specificities of each filed, the key enabling technology in EVOLVE is the usage of heterogeneity. Having the ability to specialized the platform is the guarantee that Cloud and HPC workload will be processed at optimal speed.

1.1.2. Data providers from heterogeneous workload

From a processing roadmap it is clear that accelerators are here to stay and the project will help applications to exploit complex architectures. However, there is an on-going revolution of usages, the pace of changes for applications is currently the innovation prescriber. EVOLVE will consequently help platform providers

- \rightarrow To architect relevant solutions
- \rightarrow To think workflow instead of application

As an example it could be pointed that the same data source, Sentinelle-2 satellite images are used for agricultural use case, which crop prediction, urban planing. The multi-usages a single source of data is a fact that may have been noticed by most of platform providers.

1.1.3. Lean project management

From this initial acknowledgement that several communities are represented within the consortium and that in term of data processing we are the verge of the data deluge, the project has opted for a lean management.

Evolve partners will learn from each other in a lean is earning together from each other... in a lean way

Therefore, in its life time the project has planned 3 industrial-grade HW pilots to be delivered during the project [M06, M18, M36]. Section 2, will illustrated the lean approach taken in this project with the delivery of the V0 platform.

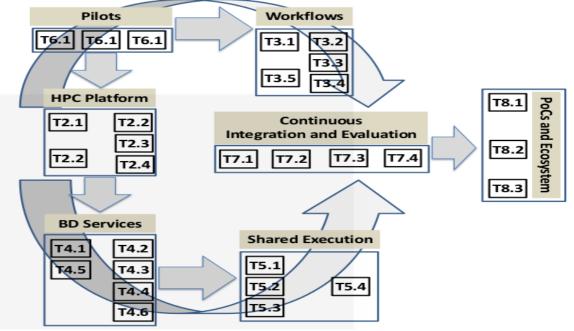


Figure 2: Circular flow and interaction within project Work-package

The lean aspect of the project management is illustrated by Figure 2 where a continuous flow of information appears across the different work-packages toward the continuous integration engine

1.2. Value proposition: 3 pillars

Evolve contribution is structured around 3 axis:

- 1. Increase productivity (easiness of problem expression)
 - \rightarrow From application to work-flow
- 2. 2 Computational ubiquity
 - \rightarrow Cloud like platform abstraction
- 3. 3 Efficiency
 - \rightarrow HPC technology Cycle and Byte optimization

For applications and data producer #1 ensure that the platform will allow a highly level of abstraction. The ability to express easily a problem is a powerful productivity enabler.

The #2 is addressing a quick often neglected aspect in project oriented toward Proof-Of-Concept. The operation side of the platform. With is strong links to Cloud community one

7/33

important contribution of Evolve is the guarantee that the platform will be easy to operated (which is not always a priority in pure HPC environment). At last, symmetrically to #2, the deep HPC roots of EVOLVE will allow applications and more generally use cases to be run in a efficient way where CUP cycle are not wasted around and byte movement are carefully counted.

Bridge the cultural gap and build a culture of trust

In order to deliver the vision while the consortium is built form various communities it is mandatory that some actions have to undertaken.

First, each partners has to acknowledge the complexity of each other assets. This will be ensure by the mandatory presentation during general meeting of all technical aspects. Platforms and applications work-package are presented jointly and a full work-package is dedicated to integration and testing.

Second, platform providers will set-up tigers team to engage applications. While a formal collaborative process is mandatory to deliver a full fledge solution, early engagement with a small team of highly-qualified experts is a proven scheme to build trust and ramp-up a collaboration. Evolve plan to follow this path.

1.3. EVOLVE in the European perspective

Accelerators are at the core of EU strategy form computing sovereignty. As illustrated by the launch of the EPI simultaneously with the Joint Undertaking HPC initiative

Therefore EVOLVE by addressing accelerated platforms on modern workloads is ideally poised

- → Market trend is with us
- \rightarrow EU acknowledges and is funding EPI

In term of time line, the European agenda is ideally aligned with EVOLVE schedule since the EVOLVE results will be available for the second phase of the EuroHPC activities (see screen-shot bellow)

e %je

It is up to EVOLVE consortium to deliver and leverage our strong initial position

2. Timeline and short term schedule

2.1. Hardware platform aggressive schedule

While the platform has been initially planned to be delivered on Month 06, the consortium has successfully set-up a more aggressive schedule thanks to the commitment of ATOS and DDN.

The V0 of the heterogeneous platform will be opened to partners at Month03.

This platform will already support processing heterogeneity with CPU anf GPU nodes.

This platform will already support storage heterogeneity with a capacity hard drive based storage and an multi-Terabyte layer of storage acceleration based on SSD.

2.2. Short term deliverable and milestones: overview

This project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 825061

9/33

www.evolve-h2020.eu

A more detailed view of the deliverables an milestones is available in the second part of the document, where a per work-packages presentation is provided.

• D1.1 Public project presentation [M01] [DDN]

 \rightarrow this document

- D1.2 Quality management plan [M03] [DDN]
- D2.1 Plan for converged hardware platform dimensioning [M6] [BULL]
- D6.1 (a,b,c) Specification of pilot workflow [M06]
- D7.1(a,b,c) Intermediate hardware prototypes [M06] [BULL]
- D7.2(a,b,c) Intermediate software stack prototypes [M06] [IBM]
- D9.1 Dissemination and communication strategy and plan [M03] [LOBA]
- D9.2(a,b,c,d) Data management plan (and revisions) [M03, M12, M24, M36] [LOBA]
- D9.3 Project web page, project stationary, and other dissemination and communication tools [M06] [LOBA]

Milestones

- MS1.1 [M3] Web page and public project presentation.
- → project splash page already available: evolve-h2020.eu
 - MS9.1 [M06] Launch of Website
 - MS2.1 [M6] Plan for converged hardware platform
- \rightarrow project converged platform v0 anticipated to M02

Next general assembly

The next general assembly is planed for Month 05 in order to proceed to a review of the deliverables due for Month 06.

3. Dissemination and communication

Public communication on the project at SIG I/O UK:

"Getting ready for platform and workload heterogeneity: A technical manifesto from the EVOLVE project"

Workshop on Storage Challenges in the UK, March 6, 2019

https://hps.vi4io.org/events/2019/sig-io-uk

Poster session at the Per3S conference:

Per3S Fifth Edition -- Inria Bordeaux SO in Talence, France -- January 25th, 2019

https://per3s.sciencesconf.org/

Electronic presence

- . NEWSLETTER
- 2 per year (total: 6)
- Based on GDPR, Distribution: Through EVOLVE's website subscribers + Partners contacts (as institutional or personal level
- Dissemination through social media

- PRESS RELEASES
- Every time there is an important announcement
- First: M2-M3?
- Agility Tool: 800.000 contacts

Dissemination and communication materials

DISSEMINATION & COMMUNICATION MATERIALS

Whenever partners need a communication materials (e.g.: events) please contact LOBA with your requirements and proposed contents and/or structure.

STATIONARY

- Word and PPT Templates
- Folder
- Letterhead paper
- Email Signature
- Business Card

PROMOTIONAL MATERIALS

- Brochures, Leaflets, Flyers
- Posters, Roll-ups
- Videos
- Banners & Images for Social Media

GIVEAWAYS

- Mini notebooks with mini pen
- Keychain with laser pointer
- Luggage tag
- Other suggestions?

12 / 33

EVOLVE detailed view on selected work-packages

The second part of this document is based on a sub-set of the slides presented during the kick-off meeting on Dec. 1^{st} ..

For the sake of clarity only a selection of materials are reproduced. The purpose is not to present a per work-package detailed view but to provide a higher level understanding of the project and its orientation.

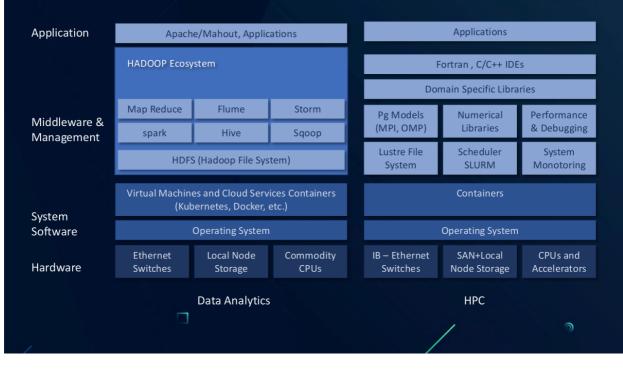
Namely, only the work-page presenting the platform (WP2), middle-ware (WP3); the workflow (WP4), the use cases (WP6 pilots) and the continuous integration (WP7) are presented.

The work-packages which are not included are of the same level of importance for a successful project but remains more technicals or have been already addressed in the first part of this document.

1. WP2: Platform detailed view

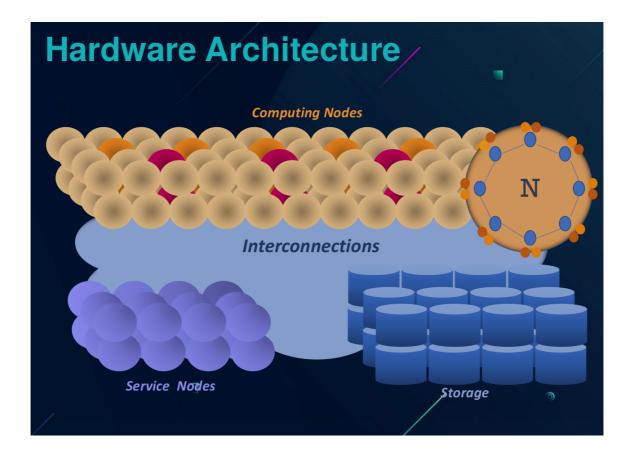
We Specifications

WP2 : Advanced Computing Platform


Main Goals

- o Design and Development of a HPC Platform
- o Execution of Concurrent Application Workflows
- Support of RAS, Security

□ Main Challenges


- Convergence of HPC, BigData and AI workflows
- Expansion of HPC's scope
 - Data deluge
 - Increase in compute power at affordable costs
- $\circ\;$ Platform to unite heterogeneous computing technologies, and converged software stacks.
- Project socket => Availability/Reliability/Accessibility/Security

Convergence of HPC and Big Data

14 / 33

Hw Acceleration in Data Analytics

This project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 825081

15/33

□ Partners : Bull, DDN, FORTH, ONAPP, ICCS, MEMO

Duration : M1-M24

□ Tasks

- Task 2.1 Hardware platform dimensioning for integrating HPC features with Big Data processing. [M1-M12] [BULL, DDN, MEMO, FORTH, ICCS, ONAPP]
- Task 2.2 Accelerated processing subsystem. [M1-M24] [ICCS, BULL, DDN, MEMO, FORTH]
- Task 2.3 Storage subsystem hierarchy based on fast devices. [M1-M24] [DDN, MEMO, BULL, FORTH]
- Task 2.4 Data protection via efficient coding over fast devices. [M1-M24]
 [MEMO, DDN, BULL, ICCS]
- Task 2.5 Support for RAS. [M1-M24] [MEMO, DDN, BULL, ONAPP]
- Task 2.6 Systems software support. [M1-M24] [ONAPP, FORTH, ICCS, DDN, BULL, MEMO]

^e ™e WPs & Tasks	interdependance
WP4 T4.1	T2.4 – Data protection Data Encryption/Decryption Data Compression/Decompression
WP7 T7.1	T2.5 – Support for RAS Data Integrity Checkpoint/Restart; System Recovery
WP5 T5.1,T5.2 T5.3, T5.4	T2.6 – Systems Software Support Monitoring HPC Features Integration to Cloud infrastructures
WP3 T3.1, 3.3 WP4	T2.2 Accelerated Processing Subsystem Programming Models Acceleration Kernels
T4.3, T4.5	T2.3 – Storage Subsystem Hierarchy Warm/cold data transfer
WP6 T6.2; T6.3	T2.1 – Platform Dimensioning for HPDA Communication Protocol Hardware Architecture Optimization

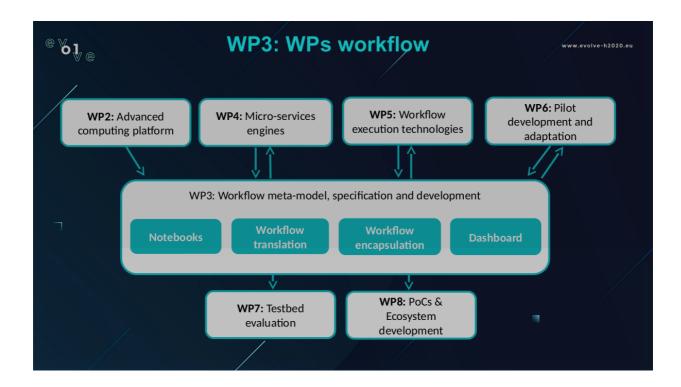
This project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 825081

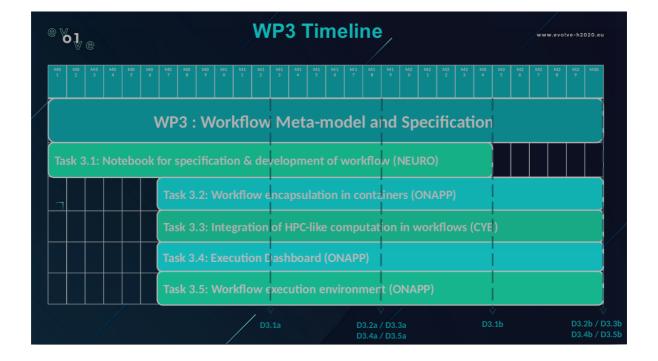
16/33

Tasks, Milestones & Deliverables

- Deliverables of various nature : Hw, Sw, Documentation
- Iterative delivery process (intermediate deliverables)
- Delivery of Platform V0 on January 2019

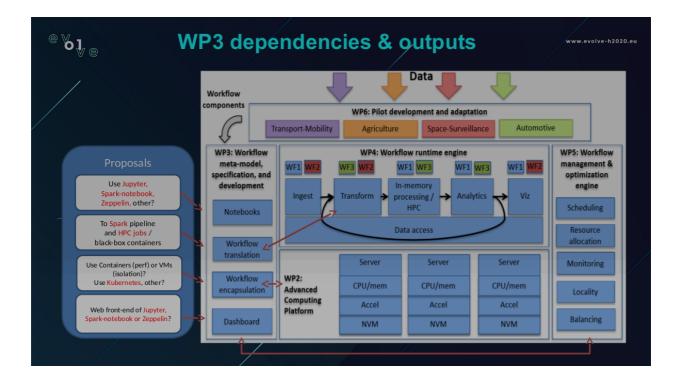
Task	M6	M12	M24
Task 2.1	MS2.1/D2.1 Platform Plan		
	MS2.2/D2	.2 Converged Hw Platform	
			MS2.3 Access to refined Platform
Task 2.2	D2.3 – Accelera	tor Features & Capabilities	
Task 2.3	D2.4 Storage Subsys	tem & fast storage devices	
Task 2.4		D2.5 Data Prote	ection efficient coding over fast devices
Task 2.5			D2.6 RAS Features
Task 2.6			D2.7 Systems Sw Support
1			7





2. WP3:Middleware

- experts, based on prescribed interfaces.
- A dashboard for requesting resources and setting up the environment workflow execution
- Executable forms of translated workflow specifications

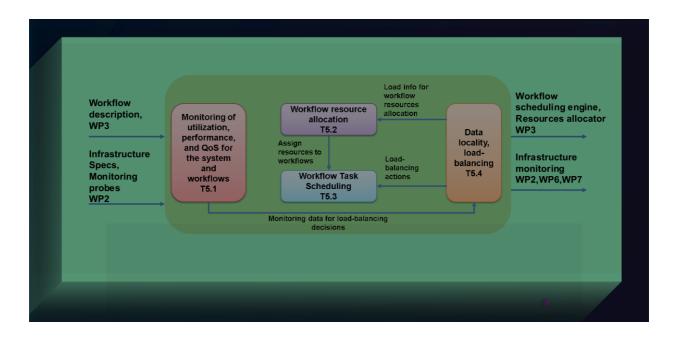


[຺] ຺ଡ଼ୢୗ ^୲ ຬ	WP3 Deliverables	& Mile	stone	es	www.evolve-h2020
	Deliverab	les			
No.	Title	Lead beneficiary	Nature	Dissemination level	Delivery date
D3.1 (a,b)	Notebook for workflow specification	NEURO	R	PU	D3.1a: M12 D3.1b: M24
D3.2 (a,b)	Workflow stage encapsulation in containers or VMs	ONAPP	R	PU	D3.2a: M18 D3.2b: M30
D3.3 (a,b)	Integration of HPC components in workflows	СҮВ	R	PU	D3.3a: M18 D3.3b: M30
D3.4 (a,b)	Execution dashboard	ONAPP	R	PU	D3.4a: M18 D3.4b: M30
D3.5 (a,b)	Workflow execution environment	ONAPP	R	PU	D3.5a: M18 D3.5b: M30
	Mileston	es			
MS3.1	First version of workflow specification front-end and execution environment	ONAPP	R	PU	M18
MS3.2	Second version of workflow specification front-end and execution environment	ONAPP	R	PU	M30

- WP3: Discussion issues
- Which computational notebook is more prominent for use within the EVOLVE project? (Jupyter Zeppelin – Spark_Notebook)
- Workflow encapsulation in containers, VMs

evj,e

- Workflow integration with Spark? Define templates, image store and encapsulation
- HPC-like processing (black-box containers / MPI, etc. integration with notebooks?)
 Need input from applications / pilots on the type & size of data, type and stages of processing, libraries used, etc.
- Execution Dashboard (based on web front-end of notebook?)
- Workflow execution environment (Use Kubernetes, Mesos or Ansible? VMs?)



/

^e ol ^e	WP3: Implementation timeline
/	
Month	Implementation
M06	Version 0 – First implementation of testbed and mock-up stack
M12	First integrated SW&HW testbed prototype
M18	First version of workflow specification front-end and execution environment (MS:3.1)
M18	Intermediate iteration (Prototype implementation with features that allow running full applications)
M24	Second integrated version of the testbed (All project pilot workflows running)
M30	Second and final version of workflow specification front end and execution environment (MS:3.2)
M30	Full prototype ready and technology evaluation initiation
M36	Final results of full deployment and evaluation (results from final workflows and large datasets)

3. Evolve Workflow

6↓_@ Allocation of resources

Resources to be allocated in batch at the moment of workflow-submission

- A workflow should be scheduled only when enough resources are available to run its jobs
- Workflows run on abstraction of dedicated cluster resources (vCLuster)

Initial plan

- Resources are statically assigned to the workflow at submission time.
 - No change of allocation during execution
- Elastic/Dynamic resource provisioning requires deeper knowledge of applications

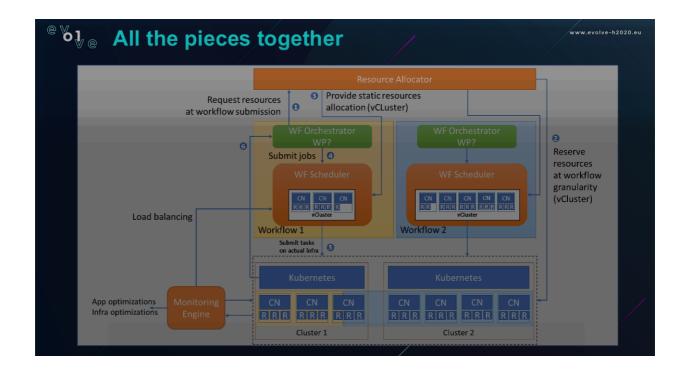
This project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 825081

22 / 33

www.evolve-h2020.eu

www.evolve-h2020.eu

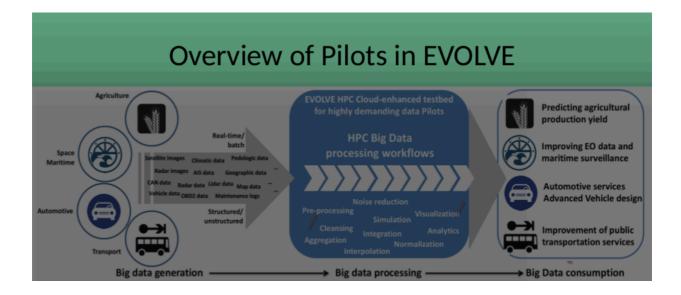
www.evolve-h2020.eu


Scheduling of tasks and Load Balancing

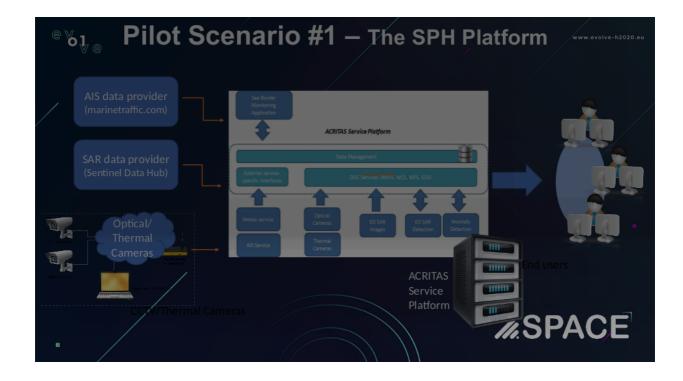
- Tasks are submitted to the scheduler by workflow orchestrator
- · Scheduler has information on the workflow and takes informed decisions
 - Colocation of jobs (e.g., frequent interactions)
 - Deployment of jobs on specific infrastructure nodes for hardware needs (e.g., network requirements, connection to storage, cached data present on site)
 - Optimize usage of vCLuster resources (e.g., minimize interference between applications)
 - Create call-back mechanisms to monitor intermediate or exit job conditions
- · Use monitoring information to perform load balancing
 - · Adapt to applications dynamic behaviour
 - Avoid hot-spots

Image: Monitoring of resources

- Enable monitoring to guarantee efficient usage of hardware resources and final user QoS
- Monitoring ad system level and application level
- Monitoring data to be collected on per-workflow basis to guarantee privacy
- How do we monitor custom hardware? (e.g., FPGAs)
- · What are the probes available in the hardware infrastructure?
- Reuse existing monitoring frameworks:
 - Prometheus: <u>https://prometheus.io/</u>
 - Telegraf: <u>https://www.influxdata.com/time-series-platform/telegraf/</u>



3.3. Deliverable for Work-flow


4. Pilots and use cases

25 / 33

Pilot Scenario #2 – Agriculture - CYB **%1**°

- agricultular production yield
- - Predict crop growth for accurate

Crop	Train wflow execu- tion	Current	Goal in EVOLVE		
	Type of data	Satellite in	nages, Field		
On on two like		sen	sors	bractices ic data	
Spectral to	Data sources	CYB, J	partners	jic data	
	Dataset size (coverage)	4GB(400	TBs(100K		
		Km ²)	Km ²)	te n	
Leaf	Detection accuracy	4% error	0.5% error		
leaf ch	Compute Time	10 hours	1 hour		
6	Yield wflow execution	Current	Goal	te n	
	Yield forecast accuracy	5% error	1% error		
	# of simulated particles	2000	100000	th model	
	Memory per pixel	4 GB	200 GB	armoder	
Parallel	Region size	400 Km ²	100K Km ²		
specific	Compute time	16 hours	10 hours		

26/33

www.evolve-h2020.eu

www.evolve-h2020.eu

www.evolve-h2020.eu

Goal in EVOLVE

Pilot Scenario #3 – Satellite Images - TAS **0]** (

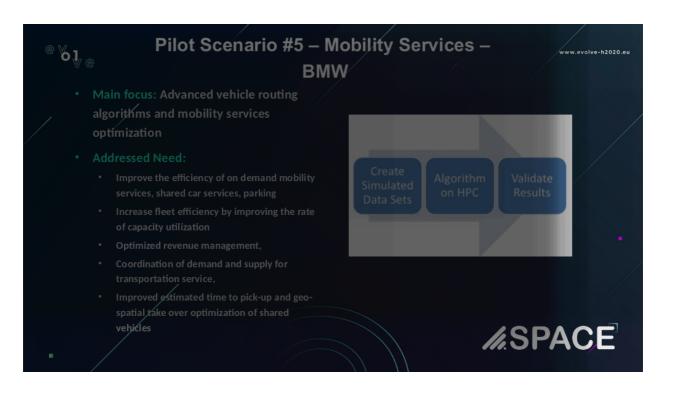
Single	Current	Goal in	
execution		EVOLVE	
Type of data	Images a	nd sensors	
Source of data	Private ne	twork, AIS	
Dataset size	10 GB	10 TB	/
Detection accuracy	~80%	>95%	
Compute Time	~20 mins	< 30 secs	
(1xSAR scene)			
Area coverage	1K Km ²	50K Km ²	
Temporal window	1 month	10 years	
Overall improve-	Improve ti	ime, spatio-	
ment	temp windo	ow 10x-50x	

Pilot Scenario #4 – Public Transportation – NEURO, MEMEX, TIEMME

Current

AVM workflow

- Main focus: Improvement of bus transportation services and city planning using observation and historic operational data


e%j_e

rrent 000 trips: 160.000 transits; 900.000 bus events: AVM¹³ data f 1 GB/day x 30 days, and ~3-5x more than AVM from other sources (Traffic sensors, parking real-time availability, O/D matrix, sat maps, social media) 10.000 trips • AVM¹³ c 1.800.000 bus events; Combine, process automatically une availability, O/D matrix, sat maps, social mental Not processed today automatically TIEMME, Available earth observation and other services (for all workflows) 10% detected trips as "suspected anomaly" or unreported 2% 5 hours (manual procedures) 2 hours (auto+mann 5% of daily trips not operated Lack of regularity of bus service from users' point of view 60% increase Poor attractiveness of PT (in particular small, medium cities) 2% passeng, increase Source of data Detection accuracy Compute Time: 2% 2 hours (auto+manual) 2% passeng. increase Poor attractiveness of PT (in particular small, medium cities) Current 500 validation transactions daily with 50,000 transits through bus stops and 100,000 passengers AFC¹³ data: 300 MBytes/day x 30 days, not possible to com-bine today with data coming from other sources 12% missed transaction/validation data 1 hour to update population O/D matrix and verify coherence with scheduled service, transport network, selling volume Not optimized selling network, poor attractiveness of PT Current 100.000 passengers to join with 50,000 transits through bus AFC workflow Goal in EVOLVE 2.500 validation transactions Combine, process automatically Detection accuracy Compute Time 2% 20 mins Overall improvement APC workflow Type of data 5% increase of tickets Current 100.000 passengers to join with 50.000 transits through bus stops and 500 validation transactions APC¹³ data; not combined today with data coming from other ITS/data sources, 250 GBytes/day x 90 days 6% "errors" in the total # of passengers counted at bus stops 30 mins to estimate ticket pay evasion 10% of users having not paid tickets Goal in EVOLVE 200.000 passengers, 2.500 transactions (detection coverage) Dataset size Combine, process automatically 4% 10 mins 8%

This project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 825061

27/33

Pilot Scenario #6 – Automotive Services – KOOLA - VIF

 Main focus: Automotive services for predictive vehicle maintenance optimization

Addressed Need:

- Customer driven always up-to-date predictions of vehicle heath
- High-quality predictive maintenance services

" `/	VII				
С С	Single workflow ex- ecution	Current	Goal EVOLV	in E	
	Type of data	Vehicles, wo servation	rkshops,	ob-	
I (E	Source of data	VIF/KOOLA, service	existing	EO	
	Dataset size	5 GB	50 GB		
	Detection accuracy	~30%	50%		
ć	Response time	hours	minutes		
	# Vehicles	5000	50000	g	
	Overall improve-	Increase accu	racy by ~	~2x,	
		#vehicles by response by 1		ease	

Pilot Scenario #7 – Vehicle Design – AVL VIF

www.evolve-h2020.eu

 Main focus: Data-assisted automotive service development

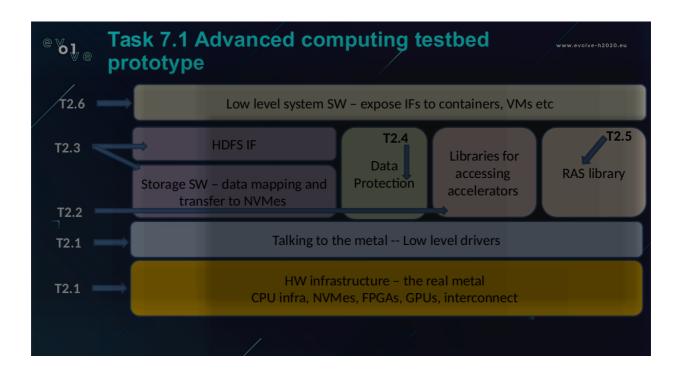
Addressed Need:

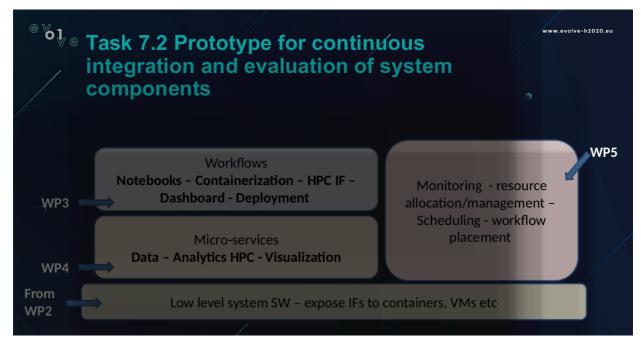
 Testing of autonomous driving functionalities with novel scenarios captured by a fleet of vehicles operated in daily traffic.
 Examples for typical well-known driving scenarios are "Free Driving", "Long Stop", "Following Driving", or "Overtaking"

/				
Single workflow ex- ecution	Current	Goal EVOLVE	in	
Type of data	Vehicles, wo servation	rkshops,	ob-	
Source of data	VIF/KOOLA, service	existing	EO	
Dataset size	5 GB	50 GB		
Detection accuracy	~30%	50%		
Response time	hours	minutes		
# Vehicles	5000	50000		
Overall improve-	Increase accu	racy by ~	2x,	
ment	#vehicles by	10x, decre	ase	
	response by 10	0-100x		

WP6 Deliverables and Milestones

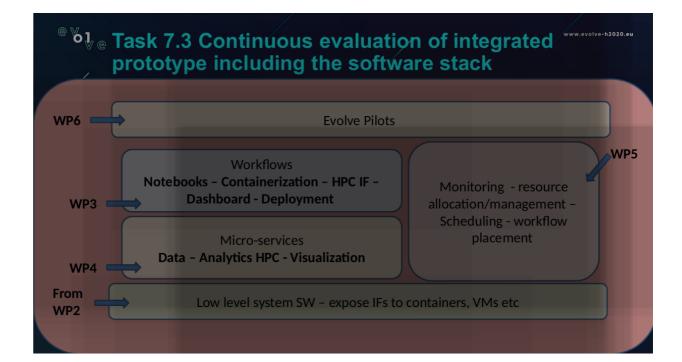
List of Deliverables

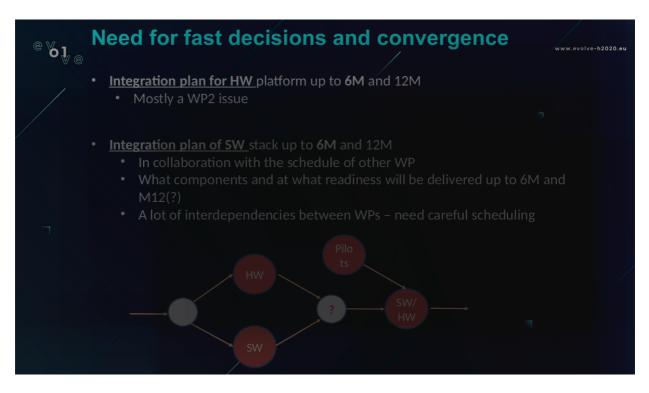

- D6.1 Specification of Pilot Workflows M6
- D6.2 First Implementation Workflows M18
- D6.3 Second / Optimized Implementation of Pilot Workflows M30


Milestones

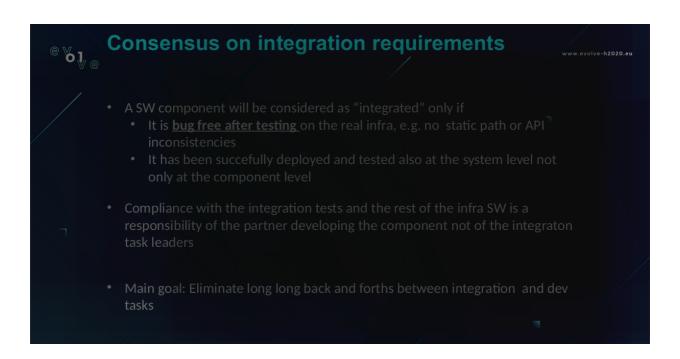
- MS 6.1 First Implementation Workflows M18
- MS 6.2 Second / Optimized Implementation of Pilot Workflows M30

5. Continuous testbed integration





programme under grant agreement No 825061



31/33

This project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 825081

32 / 33

Consortium as seen from organizations

DDN, BULL, IBM, FORTH, ONAPP, ICCS, MEMO, WLT, LOBA, TAS, SPH, CYB, NEURO, MEMEX, TIEMME, VIF, AVL, BMW, KOOLA

www.evolve-h2020.eu

Consortium as seen from Kick-Off meeting

