

Cookbook

Guidelines for using

PySpark 3.X on

EVOLVE dashboard
ICCS Group

2

This document describes the guidelines for using PySpark 3.X through zep-pelin notebook on

the EVOLVE dashboard. We provide a simple ETL example that loads a 2.5 GB dataset and

performs an SQL query. Finally, we provide the configuration for enabling CPU only as well as

GPU accelerated execution in PySpark 3.X.

For any issues or questions please contact aferikoglou@microlab.ntua.gr

Guidelines for using PySpark 3.X on EVOLVE dashboard

3

Contents

1. PySpark 3.X Zeppelin Notebook Basics ... 5

2. ETL Example .. 8

2.1. CPU Only Execution Configuration .. 9

2.2 GPU Accelerated Execution Configuration ... 9

Guidelines for using PySpark 3.X on EVOLVE dashboard

1.
PySpark 3.X Zeppelin

Notebook Basics

4

Guidelines for using PySpark 3.X on EVOLVE dashboard

5

1. PySpark 3.X Zeppelin Notebook Basics

After logging in to the EVOLVE platform, select the provided template.

Figure 1: Spark 3.X Template Selection

In order to execute your PySpark application you must add at least 2 para-graphs. One

configuration paragraph (starts with %spark.conf tag) and one or more code paragraphs (starts

with %spark.pyspark tag). The configuration paragraph describes the way your code is going to

be executed on the underlying Kubernetes cluster. The code paragraphs contain the PySpark

code you want to execute.

Figure 2: PySpark 3.X Demo Note

Guidelines for using PySpark 3.X on EVOLVE dashboard

6

Note that you should allow the created zeppelin pod in karvdash-USERNAME namespace to

create pods and services. This can be done by executing the fol-lowing commands.

1

2

$ kubectl create serviceaccount spark --namespace=karvdash-USERNAME

$ kubectl create clusterrolebinding spark-role --clusterrole=edit

--serviceaccount=karvdash-USERNAME:spark

--namespace=karvdash-USERNAME

Listing 1: Create Spark Service Account

The first command provides an identity for processes that run in a pod. In this way, processes in

containers inside pods can also contact the API Server. When they do, they are authenticated

as a particular Service Account (for example, spark). The second command provides edit

permissions across a whole cluster for the previously created spark service account.

 Guidelines for using PySpark 3.X on EVOLVE dashboard

2.
ETL Example

 Guidelines for using PySpark 3.X on EVOLVE dashboard

8

2. ETL Example

 As we already mentioned, we created a simple ETL example which loads a 2.5 GB dataset and

performs an SQL query. The used code is presented below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

% spark . pyspark

from __future__ import print_function

import sys

from pyspark . sql import SparkSession

if __name__ == " __main__ ":

Absolute path to data folder
data_dir = ’/ opt / spark / examples / src / main / python / ’
Name of input file
fn = ’nf - chunk2 . csv ’

spark = SparkSession \

. builder \

. appName (" ETL Demo ") \

. getOrCreate ()

netflow_df = spark . read . format (’ com . databricks . spark . csv ’).
options (header = ’ true ’, inferschema = ’ true ’). load (data_dir + fn)

netflow_df . createOrReplaceTempView (’ netflow ’)

query = ’’’

SELECT
a. firstSeenSrcIp as source ,
a. firstSeenDestIp as destination ,
count (a. firstSeenDestPort) as targetPorts ,
SUM (a. firstSeenSrcTotalBytes) as bytesOut ,
SUM (a. firstSeenDestTotalBytes) as bytesIn ,
SUM (a. durationSeconds) as durationSeconds ,
MIN (parsedDate) as firstFlowDate ,
MAX (parsedDate) as lastFlowDate ,
COUNT (*) as attemptCount

FROM
netflow a

GROUP BY
a. firstSeenSrcIp ,
a. firstSeenDestIp

’’’

edges_df = spark . sql (query)

edges_df . show (50)

spark . stop ()

Listing 2: PySpark ETL Example

 Guidelines for using PySpark 3.X on EVOLVE dashboard

9

The code is pretty straightforward. At first, the path to input file is defined and the spark session

is initialized. After specifying the path, the input data are loaded into a dataframe. Then the SQL

query is defined and executed while the first 50 rows of the output table are shown. Finally, the

spark session is stopped.

Note that you must put the input data (in our case nf-chunk2.csv) in the same path in both of the

zeppelin and executor pods.

In the following subsections we provide configuration files for CPU-only and GPU accelerated

execution in PySpark 3.X. These configuration files provide simple templates. It should be clear

that users can add lots of different config-urations in order to fine-tune their applications.

2.1. CPU Only Execution Configuration

PySpark 3.X can perform computation in a CPU-only manner just like its pre-vious versions.

The following configuration file creates 1 executor which uses only CPU resources, binds 32 GB

of memory and is executed on node ns66.

1

2

3

4

5

6

7

8

9

10

% spark.conf

master k8s: // https: // kubernetes.default.svc

spark.submit.deployMode client

name etlexample

spark.executor.instances 1

spark.executor.memory 32 g

spark.kubernetes.authenticate.driver.serviceAccountName spark 9

spark.kubernetes.container.image 172 .9.0.240:5000 /

zeppelin-spark3rapids-executor:v0.1

spark.kubernetes.node.selector.kubernetes.io / hostname=ns66

Listing 3: CPU Configuration

2.2 GPU Accelerated Execution Configuration

PySpark 3.X provides GPU operations in order to accelerate the overall execu-tion. The

following configuration file creates 1 executor which binds 32 GB of memory and 1 GPU. The

executor is executed on ns66 node because PySpark 3.X supports specific NVIDIA GPU

architectures (NVIDIA Pascal or better).

In particular, GPU accelerated executors can be executed only on nodes ns64, ns65 and ns66

which are provisioned with Tesla P20 and V100 cards.

 Guidelines for using PySpark 3.X on EVOLVE dashboard

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

% spark.conf

master k8s: // https: // kubernetes.default.svc

spark.submit.deployMode client

name etlexample

spark.executor.instances 1

spark.rapids.sql.concurrentGpuTasks 1

spark.rapids.memory.gpu.pooling.enabled false

spark.task.resource.gpu.amount 1

spark.executor.memory 32 g

spark.executor.resource.gpu.amount 1

spark.executor.resource.gpu.vendor nvidia.com

spark.plugins com.nvidia.spark.SQLPlugin

spark.executor.resource.gpu.discoveryScript / opt / sparkRapidsPlugin /

getGpusResources.sh

spark.kubernetes.authenticate.driver.serviceAccountName spark

spark.kubernetes.container.image 172 .9.0.240:5000 /

zeppelin-spark3rapids-executor:v0.1

spark.kubernetes.node.selector.kubernetes.io / hostname=ns66

Listing 4: GPU Configuration

A detailed explanation of each of the following configuration parameters is presented below :

• master : The cluster manager to connect to (in our case the Kuber-netes cluster master).

Specifies the Kubernetes API Server through which Zeppelin Server communicates with the

Kubernetes cluster. (do NOT change)

• spark.submit.deployMode : The deploy mode of the Spark driver pro-gram. It is either

cluster (the driver is created in a pod and executed on one of the cluster nodes) or client

(the driver is created inside the Zeppelin Server pod). Client mode is only supported. (do

NOT change)

• spark.executor.instances : Specifies the number of executor instances that will be

created.

• spark.rapids.sql.concurrentGpuTasks : Specifies the number of con-current tasks per

executor for the RAPIDS plugin. Some queries benefit significantly from setting this to a

value between 2 and 4, with 2 typi-cally providing the most benefit, and higher numbers

giving diminishing returns.

 Guidelines for using PySpark 3.X on EVOLVE dashboard

11

• spark.task.resource.gpu.amount : Specifies the number of GPUs per task. Note that

spark.task.resource.gpu.amount can be a decimal amount, so if you want multiple tasks to

be run on an executor at the same time and assigned to the same GPU you can set this to

a decimal value less than

o You would want this setting to correspond to the spark.executor.cores setting. For

instance, if you have spark.executor.cores=2 which would allow 2 tasks to run on

each executor and you want those 2 tasks to run on the same GPU then you would

set spark.task.resource.gpu.amount=0.5.

• spark.executor.memory : Specifies the amount of memory to use per executor process, in

the same format as JVM memory strings with a size unit suffix (”k”, ”m”, ”g” or ”t”).

• spark.executor.resource.gpu.amount : Specifies the number of GPUs per executor. Note

that the RAPIDS accelerator plugin only supports a one-to-one mapping between GPUs

and executors.

• spark.executor.resource.gpu.vendor : Specifies the GPU vendor. In our case, the vendor

is nvidia.com as the Nvidia device plugin is used in order to use the Kubernetes cluster

GPUs. (do NOT change)

• spark.plugins : Specifies the plugins that are going to be used. In our case, the GPU

accelerated com.nvidia.spark.SQLPlugin plugin is defined.(do NOT change)

• spark.executor.resource.gpu.discoveryScript : Specifies the script that will be used for

the discovery of GPUs in the Kubernetes cluster nodes. (do NOT change)

• spark.kubernetes.authenticate.driver.serviceAccountName : Specifies the name of the

service account. This configuration defines the service that allows the Zeppelin Server to

create other pods and services. (do NOT change)

• spark.kubernetes.container.image : Specifies the Docker container image that is going to

be used for the executor.

• spark.kubernetes.node.selector.kubernetes.io/hostname : Specifies the node the

executor pod is going to be executed (note that the defined node should have available

cards). This node selector is used in order to force the executor pod to be executed in a

node with a Tesla architecture GPU.

Both of these examples can be found in dashboard in the examples directory in the shared files

as zeppelin notebooks.

 Guidelines for using PySpark 3.X on EVOLVE dashboard

12

Figure 3: Zeppelin Notebook Examples

Figure 4: PySpark 3.X Zeppelin Notebook

