

Cookbook

Evolve Monitoring,

Scheduling and

Resources allocation

2

This document presents the Evolve platform Notebook user guide and documentation for the

Frontend UI and the Zeppelin interpreter reference.

Authors
Christian Pinto, Srikumar Venugopal, Christos Kozanitis, George Zervas,
Dimos Masouros, Ioannis Baroumas, Jean-Thomas Acquaviva

Description
User Guide for the EVOLVE monitoring and scheduling technologies

Date June 2021

Revisions 0.1 (June 2021) – Merged all contributions from partners

Evolve Frontend Notepad Cookbook – V 0.3

3

Contents

1. Monitoring of system and application metrics... 5

1.1 Monitoring of custom applications metrics .. 5

1.2 IME monitoring through Prometheus .. 8

2. Skynet Application Porting Tutorial2.1. Notes and notebooks .. 15

3. Data aware scheduling ... 19

3.1 Installation ... 19

3.2 Usage .. 21

4. Resources balancing .. 24

Evolve Frontend Notepad Cookbook – V 0.3

1.
Monitoring of system and

application metrics

4

Evolve Frontend Notepad Cookbook – V 0.3

5

1. Monitoring of system and application metrics

The Evolve consortium supports monitoring of applications and system level metrics by
providing an installation of Prometheus and Grafana on the Nova cluster.
Both services are allowed at the below addresses:

• Prometheus: https://prometheus.platform.evolve-h2020.eu/

• Grafana: https://grafana.platform.evolve-h2020.eu/

Most users won’t need to access the Prometheus interface as it is fully integrated as a Grafana
dashboard. Therefore, Grafana represents the one-stop-shop for most of monitoring needs,
especially when pre-defined monitoring metrics are needed (e.g., containers CPU and memory
utilization, etc.). Monitoring of custom applications is described in the next section. Please refer
to Grafana and Prometheus documentations for details on how to use those tools

Figure 1: Example Grafana dashboard

1.1 Monitoring of custom applications metrics

Prometheus enables monitoring of custom user application metrics via the Prometheus client

libraries, available for many programming languages either as officially supported or developed

by third parties in the community. The process through which Prometheus collects metrics is

called ‘scraping’ and exploits a web server exposed by the client library embedded in the

application. The snippet below shows an example python application using the official Python

Client Library.

As shown at line 11 in Figure 2 the client library starts an HTTP server on port 8080 that will be

later regularly scraped by Prometheus. In this example we initialize all the four different metrics

types supported by the official client library. The difference between the types is on how data is

accumulated. As an example, a summary type provides the total number of observations as well

as the sum of the observed values, while a gauge monitors a value that can arbitrarily

increase/decrease at any point in time. It is up-to the application code to decide when to push a

https://prometheus.platform.evolve-h2020.eu/
https://grafana.platform.evolve-h2020.eu/

Evolve Frontend Notepad Cookbook – V 0.3

6

new value to the various metrics (see lines 14-17 in the code snippet). The code can be then

built into a docker container.

In order for prometheus to scrape the user containers we need to set some specific values in

the in the Kubernetes pods specification. In the specific each container exporting Prometheus

metrics must be bound to a service to enable access to the web server port, as well as annotate

the container for scraping.

Figure 3 shows both an example service on port 8080 (lines 3-16) and the prometheus

annotations (lines 34-35). The prometheus.io/scrape: 'true' informs Prometheus that this pod

should be regularly scraped for data. At every scrape event the client library will dump all the

data available for any metric defined in the code.

Figure 2: Example python application using Prometheus client library.

Evolve Frontend Notepad Cookbook – V 0.3

7

After the application is running, users can verify it is being scraped by Prometheus by

checking Status -> Targets and then search for the application named “app-to-

monitor”. If the target is up as in Figure 4, Prometheus is correctly scraping it.

Figure 4: Prometheus target for custom scraper.

Figure 3: Example pod definition enabled to Prometheus scraping

Evolve Frontend Notepad Cookbook – V 0.3

8

Custom counters can be queried by name as in Figure 5 where the query is reading the

value of the my_counter custom metric.

Figure 5: Querying a user defined metric from Prometheus

If you have access to a Grafana installation connected with Prometheus all the custom

metrics are immediately accessible and can be integrated in any dashboard. The full

sources of this example are available in the Evolve Consortium Area.

1.2 IME monitoring through Prometheus

In order to deliver a comprehensive performance dashboard for all the components of EVOLVE,

an important effect has been made towards the integration of IME monitoring through

Prometheus.

The following sections present directives on how to access and find the right IME metrics for

most end-users monitoring needs. All the metrics are accessible either from the Prometheus

UI or through Grafana (details on those are given in Section 1 of the document)

https://consortiumarea.evolve-h2020.eu/storage/cda8f4a4974f37babc4382b33ea7e4bf
https://prometheus.platform.evolve-h2020.eu/
https://prometheus.platform.evolve-h2020.eu/
https://grafana.platform.evolve-h2020.eu/

Evolve Frontend Notepad Cookbook – V 0.3

9

CPU metrics

Different CPU metrics are available to monitor IME through Prometheus UI. Notice that a search

bar with auto-completion is implemented (Figure 6).

Figure 6: Different CPU metrics offered for IME. Autocompletion proposes a range of options for a query
starting with the “cpu_” prefix.

The metrics above offer a variety of ways to monitor the CPU usage in IME.

More information on the different metrics can be found on Telegraf CPU Input Plugin official

Github page

Once one of the metrics above is selected, a list of the last scrapped values or a comparative

graph for all the IME servers (Table or Graph option respectively) is displayed.

It is then possible to narrow down the value to a specific IME server by specifying the host

name in brackets as shown below (Figure 7).

Figure 7: Graph of CPU I/O wait for ime1 for the last hour

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cpu

Evolve Frontend Notepad Cookbook – V 0.3

10

As presented in the graph above, the interface offers a variety of options to explore and to filter

performance data to suit at best end-user needs. One have the following options:

• Table / Graph: Get the last scrapped value or get a graph of the values through time

• For the Graph itself multiple display formats are supported:

o Time range option

o Time for beginning of monitoring

o Resolution (Granularity of metrics in the graph)

o Unstacked vs Stacked graph

Disk metrics

Disk usage in IME can also be monitored (Figure 8).

As for the previously discussed metrics, it is possible to explore the different metrics for Disk

usage of IME through the Prometheus UI (e.g. starting a query with the “disk_” prefix) and the

official Plugin Github Page .

Figure 8: Comparative graph of the disk usage of the various file systems in host ime1

https://github.com/influxdata/telegraf/blob/master/plugins/inputs/disk/README.md

Evolve Frontend Notepad Cookbook – V 0.3

11

Memory metrics

As for the previously presented metric, it is possible to explore the different metrics for Memory

usage of IME through the Prometheus UI (e.g. starting a query with the “mem_” prefix, Figure 9)

and the official Plugin Github Page .

Figure 9: Graph of free memory in host ime1 for the last 2 hours

System metrics

As for the previously presented metric, it is possible to explore the different metrics for (system

load, uptime etc.)

In the same manner as above exploration of the different metrics for Memory usage of IME is

possible through the Prometheus UI (e.g. starting a query with the “system_” prefix, Figure 10)

and the official Plugin Github Page .

Figure 10: Stacked graph of the 1-minute load average for host ime1

https://github.com/influxdata/telegraf/blob/master/plugins/inputs/mem/README.md
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/system

Evolve Frontend Notepad Cookbook – V 0.3

12

IME native metrics

The purpose of this work is not limited to display already supported metrics by Prometheus, but

to extend the scope of available information by integrating the IME native performance statistic.

For instance, IME offers a variety of metrics like I/O activity, NVMe health and load, quotas etc.

In a similar way than for Prometheus ‘toolbox’ metrics, it is possible to explore the different

metrics for Memory usage of IME through the Prometheus UI (query starting with the

“exec_ime” prefix)

IME native statistics are exported to Prometheus as JSON formatted text. For instance, the

excerpt below presents the JSON output of the quotas submodule of ime-monitor:

{
 "pid": 3848685,
 "pool_name": "evolve",
 "server_uptime": 1461607
 },
 {
 "view": "quotas-stats",
 "title": "QUOTAS TABLE",
 "nb_objects": 1,
 "data": [
 {
 "uids": [
 {
 "uid": 64030,
 "nblocks": 9024,
 "blk_size": 131072,
 "size_used": 1182793728,
 "total_size": 960193626112,
 ...
 },
 ...
],
 "gids": [{
 "gid": 64030,
 "nblocks": 9024,
 "blk_size": 131072,
 "size_used": 1182793728,
 "total_size": 960193626112,
 "dirty": 0,
 ...

In Prometheus, in order select the size used by the User with uid 64030 (in bold green who has

offset 0), the query for ime1 will be the following:

exec_ime1_quotas_data_0_uids_0_size_used
For the second appearing user the query would be

exec_ime1_quotas_data_0_uids_1_size_used
And so on.

Evolve Frontend Notepad Cookbook – V 0.3

13

Here the issue is that for a user of the Prometheus UI, his/her offset is an internal information

not exposed to the end-user. Therefore an additional step is needed in order to find the

associated user offset. This can be achieved by searching all the user uids present in the host

and then by determining the offset of the user of interest. These operations will be realized by

the following query:

{__name__=~"exec_ime1_quotas_data_0_uids_([0-9]+)_uid"}

Figure 11: Example of output of the query to output all the UIDS in ime1

Therefore, to get an an overview of the size used by all users, the query will be:

 {__name__=~"exec_ime1_quotas_data_0_uids_([0-

9]+)_size_used"}

Figure 12: Example of graph output of the query to determine the disk size used by all users in the host the
last two days

Evolve Frontend Notepad Cookbook – V 0.3

2.
Skynet Application

Porting Tutorial

Evolve Frontend Notepad Cookbook – V 0.3

15

2. Skynet Application Porting Tutorial2.1. Notes and

notebooks

In order to port a service for Skynet we need to follow the steps below:

Step 1

As a first step we need to extract a performance metric that represents the actual performance

of our service and export it periodically to a file inside our service’s container. As an application

example we are going to use a Tensor flow image processing service.

In the image below we extract the time needed for each batch iteration to finish and extract it in

the report.txt file.

Figure 13: Example performance metric extraction for skynet

Step 2

As a second step we initialize a simple Node.js server inside the container. This server’s

listening port is 8080 and each time it receives a request it serves back the application’s metric

value as well the hostname of the container. Skynet uses Prometheus in order to ping services

and gather the performance metrics.

In the image below there is a sample Node.js implementation.

Evolve Frontend Notepad Cookbook – V 0.3

16

Figure 14: Sample Node.js implementation

Step 3

As a third step we have to create a Kubernetes configuration ‘yaml’ file in order to deploy our

service. The table below contains the parameters we need to change inside the configuration in

order to port our application for Skynet.

metadata->name Deployment’s name

metadata->annotations>app Deployment’s name

spec>template>metadata->annotations->app Deployment’s name

spec>template>spec->containers->image The name of the application’s Docker

image

metric-type The type of metric our application

reports (0 if higher is better - 1 if lower

is better)

Evolve Frontend Notepad Cookbook – V 0.3

17

In the image below we define a Kubernetes deployment running a Skynet compatible service.

Figure 15: Example of Skynet enabled Kubernetes service

Evolve Frontend Notepad Cookbook – V 0.3

3.
Data aware scheduling

Evolve Frontend Notepad Cookbook – V 0.3

19

3. Data aware scheduling

Volcano is a batch job scheduler and management system for Kubernetes. It provides

integrations for many distributed data analytic frameworks, such as Argo, Kubeflow,

SparkOperator, PaddlePaddle, and Horovod among other. It provides Kubernetes-native

implementation of batch job scheduling capabilities such as queue management, gang

scheduling, backfill, job pre-emption and reclamation, and resource reservation. Volcano

provides these capabilities through CRDs (Custom Resource Definitions) representing

PodGroups, VCJobs, and Queues, and through three components: AdmissionController,

Controller Manager, and the Scheduler.

3.1 Installation

The easiest method for installation is use the Helm charts provided in the Volcano git repository.

Helm installation process can be customised to a specific namespace using the

target_namespace parameter. An alternative method for installation is to deploy using the

YAML file

Volcano is running when its three constituent deployments (Admission Controller, Controller,

and Scheduler) are up and running. The Admission Controller examines jobs, PodGroups, and

pods submitted to Kubernetes API Server for Volcano-specific annotations. The Controller

Manager manages the lifecycle of the CRDs. The Scheduler maps the jobs to specific nodes

based on resource management algorithms.

$ git clone https://github.com/volcano-sh/volcano.git
$ helm install volcano installer/helm/chart/volcano --namespace <target_namespace>

$ kubectl create -f installer/volcano-development.yaml

Evolve Frontend Notepad Cookbook – V 0.3

20

The Volcano installation can be further customised through the configuration file

(installer/helm/chart/volcano/config/volcano-scheduler.conf) which lists the plugins that are

activated. Each plugin implements a scheduling filter or scoring method to refine the allocation

of pods to nodes. The example below includes the plugin for data-aware scoring along with the

predicates filter plugin and the priority scoring plugin.

$ kubectl get deployments -n volcano-system
NAME READY UP-TO-DATE AVAILABLE AGE
volcano-admission 1/1 1 1 76m
volcano-controllers 1/1 1 1 76m
volcano-scheduler 1/1 1 1 76m

$ cat installer/helm/chart/volcano/config/volcano-scheduler.conf
actions: "enqueue, allocate"
tiers:
- plugins:
 - name: predicates
 - name: datacache
 - name: priority

Evolve Frontend Notepad Cookbook – V 0.3

21

3.2 Usage

A PodGroup represents a set of pods that are associated with each other. For example, the set

of pods belonging to a single application framework (e.g. Spark) can be a PodGroup.

PodGroups are the basis for the scheduling decisions in Volcano. VCJobs are Job

specifications particular to Volcano, and are composed of Tasks, that can be customised with

pod templates, lifecycles, and failure handling. VCJobs can be associated with priority classes.

Internally, the tasks get translated to PodGroups and to individual pods. A Queue is a collection

of PodGroups and can be limited to deploying pods on specific sets of nodes.

The above figure shows listing of the Kubernetes YAML file for a Spark application using DLF.

Only the relevant lines are shown in the listing. The pod named spark-dlf-runner executes

spark-submit command that interfaces with the Kubernetes API server to create the Spark

driver for the job. The Spark driver in turn creates the executors. The dataset information is

supplied through the label dataset.0.id for both the driver and executor. When the driver and

executor pods are created, the admission controller for DLF injects the volume information into

the pod specification.

The pod template shown below is applied to both the driver and executor pods. The

schedulerName property specifies which scheduler will handle the allocation of this pod as

Kubernetes allows multiple schedulers in a single cluster. The annotation in 9 associates the

driver and executors pod with a Volcano PodGroup (spark-dlf-pg). This PodGroup is further

defined in the next figure. Volcano associates this PodGroup with a Job and any pods added to

the PodGroup become Tasks that are then handled by the scheduler loop.

apiVersion: v1
kind: Pod
metadata:
 name: spark-dlf-runner
spec:
 ...
 containers:
 - name: spark-tpcds1g
 ...
 args:
 - /opt/spark/bin/spark-submit
 - --master
 - ...
 - --conf
 - spark.kubernetes.driver.podTemplateFile=/opt/spark/tpc-ds-performance-test/podtemplate.yaml
 - --conf
 - spark.kubernetes.driver.label.dataset.0.id=example-dataset
 - --conf
 - spark.kubernetes.driver.label.dataset.0.useas=mount

...
 - --conf
 - spark.kubernetes.executor.podTemplateFile=/opt/spark/tpc-ds-performance-test/podtemplate.yaml
 - --conf
 - spark.kubernetes.executor.label.dataset.0.id=example-dataset
 - --conf
 - spark.kubernetes.executor.label.dataset.0.useas=mount
 - --class
 - SparkRunner

...

Evolve Frontend Notepad Cookbook – V 0.3

22

Currently, the data-aware scoring plugin is activated when three conditions are met:

• A job requires a dataset, and the nodes that host the gateways and data for the dataset

are labelled dataset=<dataset_name>

• all the nodes are labelled with the topology keys kubernetes.io/hostname,

topology.kubernetes.io/region, topology.kubernetes.io/zone, and rack

• the rack label should group the nodes accordingly

apiVersion: scheduling.volcano.sh/v1beta1
kind: PodGroup
metadata:
 name: spark-dlf-pg
 namespace: dlf
spec:
 minMember: 1
 queue: default
 minResources:
 cpu: 4
 memory: 16384m

apiVersion: v1
kind: Pod
metadata:
 annotations:
 scheduling.k8s.io/group-name: spark-dlf-pg
spec:
 schedulerName: volcano

Evolve Frontend Notepad Cookbook – V 0.3

4.
Resources balancing

23

Evolve Frontend Notepad Cookbook – V 0.3

24

4. Resources balancing

Evolve platform supports an interference-aware scheduler as an option for application

placement in the NOVA cluster. This custom scheduler is able to efficiently place applications

on a Kubernetes environment. Using a universal approach for every kind of workload behaviour

and duration, this framework aims to decrease application execution delays provoked by

interference phenomena.

Evolve’s interference-aware scheduler outperforms the default one of Kubernetes, improving

the performance of the scheduled workloads, by efficiently equilibrating the usage of low-level

system resources between the available machines. The integrated scheduler using socket-level

metrics, and a custom scoring function firstly prioritizes the available nodes in respect to their

most viable socket, places the application in the winning node and lastly pins the application to

the proper socket. With this, interference in low level system resources is detected and avoided

by the upcoming applications resulting to a more fair exploitation of the underlying systems of

the cluster. As performance we consider the median execution latency in the deployed

applications’ distribution. You can find an extensive description in the Evolve Consortium Area.

In order to make this tool available to the end user, a mutation webhook is used. Namespaces

with the label custom-scheduler-injector=enabled, will trigger the mutation webhook by the

time of application deployment. Afterwards, all the required configurations are applied, and the

incoming workload will be placed in the cluster according to the interference-aware scheduler’s

policy.

Users that are willing to use this custom scheduler for their workload placement will need to

label their namespace (<your-namespace>) with the required key-value pair mentioned above.

[user@kubemaster ~]$ kubectl label namespace <your-namespace>

custom-scheduler-injector=enabled

namespace/<your-namespace> labeled

[user@kubemaster ~]$ kubectl get namespaces -L custom-scheduler-

injector

NAME STATUS AGE CUSTOM-SCHEDULER-

INJECTOR

cert-manager Active 25h

custom-scheduler-injector Active 23h

default Active 3d21h

dlf Active 25h

iccs-scheduler-apps Active 2d14h

ingress-nginx Active 25h

kube-node-lease Active 3d21h

kube-public Active 3d21h

kube-system Active 3d21h

<your-namespace> Active 52s enabled

https://consortiumarea.evolve-h2020.eu/storage/4276f749b435852c82280a445921d822

